【題目】已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1,在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且f(B)=1.
(1)求B;
(2)若 =3,求b的取值范圍.

【答案】
(1)解:f(x)=2 sinxcosx+2cos2x﹣1= sin2x+cos2x= ,

∵f(B)=1,∴ =1,即sin(2B+ )= ,

∵B∈(0,π),∴


(2)解:∵ =3,∴cacos =3,解得ac=6.

∴b2=a2+c2﹣2accosB=a2+c2﹣6≥2ac﹣6=6,

解得b

∴b的取值范圍是


【解析】(1)利用倍角公式、和差公式可得:f(x)= ,由于f(B)=1,可得 =1,B∈(0,π),即可得出.(2)由 =3,可得ac=6.再利用余弦定理與基本不等式的性質(zhì)即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的組合體中,三棱柱ABC﹣A1B1C1的側面ABB1A1是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個點.
(Ⅰ)若圓柱的軸截面是正方形,當點C是弧AB的中點時,求異面直線A1C與AB1的所成角的大。
(Ⅱ)當點C是弧AB的中點時,求四棱錐A1﹣BCC1B1與圓柱的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·湖南)設,且,證明
(1)
(2)不可能同時成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設曲線y=xn+1(n∈N+)在點(1,1)處的切線與x軸的交點的橫坐標為xn , 則log2015x1+log2015x2+…+log2015x2014的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的底面是銳角三角形,則存在過點A的平面(

A.與直線BC和直線A1B1都平行
B.與直線BC和直線A1B1都垂直
C.與直線BC平行且直線A1B1垂直
D.與直線BC和直線A1B1所成角相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列選項中說法正確的是(
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量 滿足 ,則 的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,AP=AB=AC=a, ,PA⊥底面ABCD.
(1)求證:平面PCD⊥平面PAC;
(2)在棱PC上是否存在一點E,使得二面角B﹣AE﹣D的平面角的余弦值為 ?若存在,求出 的值?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=(x2﹣3)ex(其中x∈R,e是自然對數(shù)的底數(shù)),當t1>0時,關于x的方程[f(x)﹣t1][f(x)﹣t2]=0恰好有5個實數(shù)根,則實數(shù)t2的取值范圍是(
A.(﹣2e,0)
B.(﹣2e,0]
C.[﹣2e,6e3]
D.(﹣2e,6e3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 (a>0,b>0)的左、右焦點分別為F1、F2 , 過點F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點,AF2、BF2分別交y軸于P、Q兩點,若△PQF2的周長為12,則ab取得最大值時該雙曲線的離心率為(
A.
B.
C.2
D.

查看答案和解析>>

同步練習冊答案