【題目】已知f(x)=(x2﹣3)ex(其中x∈R,e是自然對數(shù)的底數(shù)),當t1>0時,關于x的方程[f(x)﹣t1][f(x)﹣t2]=0恰好有5個實數(shù)根,則實數(shù)t2的取值范圍是(
A.(﹣2e,0)
B.(﹣2e,0]
C.[﹣2e,6e3]
D.(﹣2e,6e3

【答案】D
【解析】解:f(x)=(x2﹣3)ex的導數(shù)為 f′(x)=(x2+2x﹣3)ex=(x﹣1)(x+3)ex ,
當﹣3<x<1時,f′(x)<0,f(x)遞減;
當x>1或x<﹣3時,f′(x)>0,f(x)遞增.
可得f(x)的極小值為f(1)=﹣2e,極大值為f(﹣3)=6e3 ,
作出y=f(x)的圖象,如圖:
當t1>0時,關于x的方程[f(x)﹣t1][f(x)﹣t2]=0
恰好有5個實數(shù)根,
即為f(x)=t1或f(x)=t2恰好有5個實數(shù)根,
若t1>6e3 , f(x)=t1只有一個實根,不合題意;
若0<t1<6e3 , f(x)=t1有三個實根,只要﹣2e<t2≤0,滿足題意;
若t1=6e3 , f(x)=t1有兩個實根,只要0<t2<6e3 , 滿足題意;
綜上可得,t2的范圍是(﹣2e,6e3).
故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,AB=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大;
(2)四棱錐A1﹣B1BCC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1,在△ABC中,內角A,B,C的對邊分別為a,b,c,且f(B)=1.
(1)求B;
(2)若 =3,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為(
A.20
B.61
C.183
D.548

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x2﹣ax+lnx,a∈R.
(1)當a=3時,求函數(shù)f(x)的極小值;
(2)令g(x)=x2﹣f(x),是否存在實數(shù)a,當x∈[1,e](e是自然對數(shù)的底數(shù))時,函數(shù)g(x)取得最小值為1.若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為F1 , F2 , 上頂點為B,若△BF1F2的周長為6,且點F1到直線BF2的距離為b. (Ⅰ)求橢圓C的方程;
(Ⅱ)設A1 , A2是橢圓C長軸的兩個端點,點P是橢圓C上不同于A1 , A2的任意一點,直線A1P交直線x=m于點M,若以MP為直徑的圓過點A2 , 求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是首項為1的單調遞增的等比數(shù)列,且滿足a3 成等差數(shù)列.
(1)求{an}的通項公式;
(2)若bn=log3(anan+1)(n∈N*),求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關系,請用相關系數(shù)加以說明;
(Ⅱ)建立y關于t的回歸方程(系數(shù)精確到0.01),預測2017年我國生活垃圾無害化處理量.
參考數(shù)據(jù): =9.32, =40.17, =0.55, ≈2.646.
參考公式:相關系數(shù)r= 回歸方程 = + t 中斜率和截距的最小二乘估計公式分別為: = , =

查看答案和解析>>

同步練習冊答案