【題目】已知函數(shù), , , .
(1)討論的單調(diào)性;
(2)若存在最大值, 存在最小值,且,求證: .
【答案】(1)在遞增,在遞減.(2)證明見解析.
【解析】試題分析:(1)當(dāng)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,可求出函數(shù)的單調(diào)區(qū)間即可;;(2)求出的導(dǎo)數(shù),構(gòu)造函數(shù)求出的表達式,構(gòu)造函數(shù),根據(jù)函數(shù)的單調(diào)性證出結(jié)論.
試題解析:
(1)由題意知, , ,
時, , 在遞減,
時,令 ,令 ,
∴在遞增,在遞減.
(2)證明: ,
時, 恒成立, 在遞增,無最小值,
由(1)知,此時無最大值,故.
令,則,
∵, ,
故存在唯一,使得,即,
列表如下:
由(1)得:
, ,
由題意,即,將代入上式有:
化簡得: (*)
構(gòu)造函數(shù), ,
顯然單調(diào)遞增,且, ,
則存在唯一,使得.
且時, , 單調(diào)遞減; 時, , 單調(diào)遞增.
又,故只會在有解,
而
故(*)的解是,則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關(guān)于行駛速度(千米/小時)的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為和,且各株大樹是否成活互不影響.求移栽的4株大樹中:
(1)兩種大樹各成活1株的概率;
(2)成活的株數(shù)ξ的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: 的左、右焦點分別為, 為坐標(biāo)原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為其導(dǎo)函數(shù).
(1) 設(shè),求函數(shù)的單調(diào)區(qū)間;
(2) 若, 設(shè), 為函數(shù)圖象上不同的兩點,且滿足,設(shè)線段中點的橫坐標(biāo)為 證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形, 平面, , 是棱上的一個動點, 為的中點.
(Ⅰ)求證:平面平面;
(Ⅱ)若,求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(江淮十校2017屆高三第一次聯(lián)考文數(shù)試題第7題)《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章計算弧田面積所用的經(jīng)驗公式為:弧田面積=1/2(弦矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,半徑等于4米的弧田.按照上述方法計算出弧田的面積約為( )
A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓C: 上一點,點P到橢圓C的兩個焦點的距離之和為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C上異于點P的兩點,直線PA與直線交于點M,
是否存在點A,使得?若存在,求出點A的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com