【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

參考公式:

【答案】(1) y=0.7x+0.35;(2) 19.65噸.

【解析】

1)利用回歸直線方程計(jì)算公式,計(jì)算出回歸直線方程.2)令,求得改造后的能耗,用原來(lái)的能耗減去改造后的能耗,求得生產(chǎn)能耗比技改前降低的標(biāo)準(zhǔn)煤噸數(shù).

(1)由對(duì)照數(shù)據(jù),計(jì)算得,=4.5,=3.5,

∴回歸方程的系數(shù)為=0.7,=3.5-0.7×4.5=0.35,

∴所求線性回歸方程為y=0.7x+0.35;

(2)由(1)求出的線性回歸方程,

估計(jì)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗為0.7×100+0.35=70.35(噸),

由90-70.35=19.65,

∴生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低19.65噸.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c

)若ab,c成等差數(shù)列,證明:sinA+sinC=2sinA+C);

)若a,bc成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某地村莊P與村莊O的距離為千米,從村莊O出發(fā)有兩條道路,經(jīng)測(cè)量,的夾角為,OP與的夾角滿足(其中),現(xiàn)要經(jīng)過(guò)P修一條直路分別與道路交匯于兩點(diǎn),并在處設(shè)立公共設(shè)施.

(1)已知修建道路的單位造價(jià)分別為2m元/千米和m元/千米,若兩段道路的總造價(jià)相等,求此時(shí)點(diǎn)之間的距離;

(2)考慮環(huán)境因素,需要對(duì)段道路進(jìn)行翻修,段的翻修單價(jià)分別為n元/千米和元/千米,要使兩段道路的翻修總價(jià)最少,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,,分別是,,的中點(diǎn).

(1)求異面直線所成角的大。

(2)棱上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】流行性感冒多由病毒引起,據(jù)調(diào)查,空氣相對(duì)濕度過(guò)大或過(guò)小時(shí),都有利于一些病毒的繁殖和傳播.科學(xué)測(cè)定,當(dāng)空氣相對(duì)濕度大于65%或小于40%時(shí),病毒繁殖滋生較快,當(dāng)空氣相對(duì)濕度在45%—55%時(shí),病毒死亡較快,現(xiàn)隨機(jī)抽取了全國(guó)部分城市,獲得了它們的空氣月平均相對(duì)濕度共300個(gè)數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表,其中為了記錄方便,將空氣相對(duì)濕度在%~%時(shí)記為區(qū)間

(I)求上述數(shù)據(jù)中空氣相對(duì)濕度使病毒死亡較快的頻率;

(Ⅱ)從區(qū)間[ 15,35)的數(shù)據(jù)中任取兩個(gè)數(shù)據(jù),求恰有一個(gè)數(shù)據(jù)位于[25,35)的概率;

(Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中空氣月平均相對(duì)濕度的平均數(shù)在第幾組(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:(x﹣a)2+(y﹣b)2=1(a>0)關(guān)于直線3x﹣2y=0對(duì)稱,且與直線3x﹣4y+1=0相切.

(1)求圓C的方程;

(2)若直線l:y=kx+2與圓C交于M,N兩點(diǎn),是否存在直線l,使得(O為坐標(biāo)原點(diǎn))若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (, 為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),若直線與曲線沒有公共點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確的為________(正確序號(hào)全部填上)

1)空間中,一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,則這兩個(gè)角相等或互補(bǔ);

2)一個(gè)二面角的兩個(gè)半平面與另一個(gè)二面角的兩個(gè)半平面分別垂直,則這兩個(gè)二面角相等或互補(bǔ);

3)直線為異面直線,所成角的大小為,過(guò)空間一點(diǎn)作直線,使l與直線及直線都成相等的角,這樣的直線可作3條;

4)直線與平面相交,過(guò)直線可作唯一的平面與平面垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,在《我是演說(shuō)家》第四季這檔節(jié)目中,英國(guó)華威大學(xué)留學(xué)生游斯彬的“數(shù)學(xué)之美”的演講視頻在微信朋友圈不斷被轉(zhuǎn)發(fā),他的視角獨(dú)特,語(yǔ)言幽默,給觀眾留下了深刻的印象.某機(jī)構(gòu)為了了解觀眾對(duì)該演講的喜愛程度,隨機(jī)調(diào)查了觀看了該演講的140名觀眾,得到如下的列聯(lián)表:(單位:名)

總計(jì)

喜愛

40

60

100

不喜愛

20

20

40

總計(jì)

60

80

140

(1)根據(jù)以上列聯(lián)表,問(wèn)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為觀眾性別與喜愛該演講有關(guān).(精確到0.001)

(2)從這60名男觀眾中按對(duì)該演講是否喜愛采取分層抽樣,抽取一個(gè)容量為6的樣本,然后隨機(jī)選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛該演講的概率.

附:臨界值表

0.10

0.05

0.025

0.010

0.005

2.705

3.841

5.024

6.635

7.879

參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案