【題目】葫蘆島市某高中進行一項調(diào)查:2012年至2016年本校學(xué)生人均年求學(xué)花銷(單位:萬元)的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

年份代號

1

2

3

4

5

年求學(xué)花銷

3.2

3.5

3.8

4.6

4.9

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,分析2012年至2016年本校學(xué)生人均年求學(xué)花銷的變化情況,并預(yù)測該地區(qū)2017年本校學(xué)生人均年求學(xué)花銷情況.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

【答案】(1) . (2)5.35萬元

【解析】試題分析:

(1)由題意求得,結(jié)合線性回歸方程的計算公式可得關(guān)于的線性回歸方程是.

(2)利用回歸方程進行預(yù)測可得2017年本校學(xué)生人均年求學(xué)花銷為5.35萬元

試題解析:

由題意知: ,所以

,所以線性回歸方程為.

(2)由(1)知回歸直線方程為b>0,所以2012到2016年本校學(xué)生人均年求學(xué)花銷逐年增加,平均每年增加0.45萬元。

x=6時,

故預(yù)測2017年本校學(xué)生人均年求學(xué)花銷為5.35萬元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對高二年段的男生進行體檢,現(xiàn)將高二男生的體重數(shù)據(jù)進行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組的人數(shù)為200.根據(jù)一般標準,高二男生體重超過屬于偏胖,低于屬于偏瘦.觀察圖形的信息,回答下列問題:

(1)求體重在內(nèi)的頻率,并補全頻率分布直方圖;

(2)用分層抽樣的方法從偏胖的學(xué)生中抽取人對日常生活習(xí)慣及體育鍛煉進行調(diào)查,則各組應(yīng)分別抽取多少人?

(3)根據(jù)頻率分布直方圖,估計高二男生的體重的中位數(shù)與平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司做了用戶對其產(chǎn)品滿意度的問卷調(diào)查,隨機抽取了20名用戶的評分,得到圖3所示莖葉圖,對不低于75的評分,認為用戶對產(chǎn)品滿意,否則,認為不滿意,

(Ⅰ)根據(jù)以上資料完成下面的2×2列聯(lián)表,若據(jù)此數(shù)據(jù)算得,則在犯錯的概率不超過5%的前提下,你是否認為“滿意與否”與“性別”有關(guān)?

附:

(Ⅱ) 估計用戶對該公司的產(chǎn)品“滿意”的概率;

(Ⅲ) 該公司為對客戶做進一步的調(diào)查,從上述對其產(chǎn)品滿意的用戶中再隨機選取2人,求這兩人都是男用戶或都是女用戶的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程.

已知曲線的參數(shù)方程為為參數(shù),以直角坐標系原點為極點,軸正半軸為極軸建立極坐標系.

1求曲線的極坐標方程;

2若直線的極坐標方程為,求直線被曲線截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣﹣(a+2)lnx,其中實數(shù)a≥0.

(1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;

(2)若a>0,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們用圓的性質(zhì)類比球的性質(zhì)如下:

p:圓心與弦(非直徑)中點的連線垂直于弦; q:球心與小圓截面圓心的連線垂直于截面.

p:與圓心距離相等的兩條弦長相等; q:與球心距離相等的兩個截面圓的面積相等.

p:圓的周長為Cd(d是圓的直徑); q:球的表面積為Sd2(d是球的直徑).

p:圓的面積為S=R·πd(R,d是圓的半徑與直徑); q:球的體積為V=R·πd2(R,d是球的半徑與直徑).

則上面的四組命題中,其中類比得到的q是真命題的有( )個

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

)證明:;

)證明:當時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(

(1)若,求曲線處的切線方程.

(2)對任意,總存在,使得(其中的導(dǎo)數(shù))成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的最大值;

(2)當時,函數(shù)有最小值. 的最小值為,求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案