【題目】如圖,側(cè)棱與底面垂直的四棱柱ABCD,A1B1C1D1的底面是梯形,AB∥CD,AB⊥AD,AA1=4,DC=2AB,AB=AD=3,點(diǎn)M在棱A1B1上,且A1M=A1B1.已知點(diǎn)E是直線CD上的一點(diǎn),AM∥平面BC1E.
(1)試確定點(diǎn)E的位置,并說明理由;
(2)求三棱錐M-BC1E的體積.
【答案】(1)點(diǎn)E在線段CD上且EC=1,見解析;(2)6
【解析】
(1)在上取點(diǎn),使得,推導(dǎo)出四邊形為平行四邊形,從而,進(jìn)而得到平面,即可確定點(diǎn)的位置,得到答案;
(2)由平面,得到三棱錐的體積,即可求解.
(1)點(diǎn)E在線段CD上且EC=1,理由如下.
在棱C1D1上取點(diǎn)N,使得D1N=A1M=1,連接MN,DN,
又D1N∥A1M,所以,
所以四邊形AMND為平行四邊形,所以AM∥DN.
因為CE=1,所以易知DN∥EC1,所以AM∥EC1,
又AM平面BC1E,EC1平面BC1E,所以AM∥平面BC1E.
故點(diǎn)E在線段CD上且EC=1.
(2)由(1)知,AM∥平面BC1E,
可得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把定義在上,且滿足(其中常數(shù)、滿足,,)的函數(shù)叫做似周期函數(shù).
(1)若某個似周期函數(shù)滿足且圖象關(guān)于直線對稱,求證:函數(shù)是偶函數(shù);
(2)當(dāng),時,某個似周期函數(shù)在時的解析式為,求函數(shù),,的解析式;
(3)對于(2)中的函數(shù),若對任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足.
(1)證明:數(shù)列為等差數(shù)列;
(2)設(shè)數(shù)列的前n項和為,若,且對任意的正整數(shù)n,都有,求整數(shù)的值;
(3)設(shè)數(shù)列滿足,若,且存在正整數(shù)s,t,使得是整數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某烘焙店加工一個成本為60元的蛋糕,然后以每個120元的價格出售,如果當(dāng)天賣不完,剩下的這種蛋糕作餐廚垃圾處理.
(1)若烘焙店一天加工16個這種蛋糕,,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:個,)的函數(shù)解析式;
(2)烘焙店記錄了100天這種蛋糕的日需求量(單位:個),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①若烘焙店一天加工16個這種蛋糕,表示當(dāng)天的利潤(單位:元),求的分布列與數(shù)學(xué)期望及方差;
②若烘焙店一天加工16個或17個這種蛋糕,僅從獲得利潤大的角度考慮,你認(rèn)為應(yīng)加工16個還是17個?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代計時器的發(fā)明時間不晚于戰(zhàn)國時代(公元前476年~前222年),其中沙漏就是古代利用機(jī)械原理設(shè)計的一種計時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細(xì)沙全部在上部容器中,細(xì)沙通過連接管道流到下部容器,如圖,某沙漏由上、下兩個圓錐容器組成,圓錐的底面圓的直徑和高均為8 cm,細(xì)沙全部在上部時,其高度為圓錐高度的(細(xì)管長度忽略不計).若細(xì)沙全部漏入下部后,恰好堆成一個蓋住沙漏底部的圓錐形沙堆,則此圓錐形沙堆的高為( )
A.2 cmB. cmC. cmD. cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四座城市、、、,其中在的正東方向,且與相距,在的北偏東方向,且與相距;在的北偏東方向,且與相距,一架飛機(jī)從城市出發(fā)以的速度向城市飛行,飛行了,接到命令改變航向,飛向城市,此時飛機(jī)距離城市有( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.已知函數(shù),.
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時,求證:函數(shù)恰有兩個零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com