【題目】冠狀病毒是一個大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重疾。霈F(xiàn)的新型冠狀病毒(nCoV)是從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢測血液中的指標.現(xiàn)從采集的血液樣品中抽取500份檢測指標的值,由測量結果得下側頻率分布直方圖:

1)求這500份血液樣品指標值的平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表,記作);

2)由頻率分布直方圖可以認為,這項指標的值X服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.在統(tǒng)計學中,把發(fā)生概率小于3‰的事件稱為小概率事件(正常條件下小概率事件的發(fā)生是不正常的).該醫(yī)院非常關注本院醫(yī)生健康狀況,隨機抽取20名醫(yī)生,獨立的檢測血液中指標的值,結果發(fā)現(xiàn)4名醫(yī)生血液中指標的值大于正常值20.03,試根據(jù)題中條件判斷該院醫(yī)生的健康率是否正常,并說明理由.

附:參考數(shù)據(jù)與公式:, ,;若,則①;②;③,,

【答案】117.4;6.922)該院醫(yī)生的健康率是正常的.見解析

【解析】

1)由頻率分布直方圖,直接利用平均數(shù)和方差公式,求出500份血液樣品指標值的平均數(shù)和樣本方差;

2)由(1)得出指標的值服從正態(tài)分布,從而可求出,在根據(jù)獨立重復試驗中的概率求法,求出20名醫(yī)生中出現(xiàn)4名醫(yī)生血液中指標的值大于正常值20.03的概率,即可判斷該院醫(yī)生的健康率是否正常.

解:(1)根據(jù)題意,由頻率分布直方圖可知,

500份血液樣品指標值的平均數(shù)為:

,

500份血液樣品指標值的樣本方差為:

2)由題意知:指標的值服從正態(tài)分布

,,則,

所以,

隨機抽取20名醫(yī)生獨立檢測血液中指標的值,就相當于進行了20次獨立重復試驗,

“20名醫(yī)生中出現(xiàn)4名醫(yī)生血液中指標的值大于正常值20,03”為事件,

,

所以從血液中指標的值的角度來看:該院醫(yī)生的健康率是正常的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:冪勢既同,則積不容異.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為(

A.πB.πC.4D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】基于移動互聯(lián)技術的共享單車被稱為新四大發(fā)明之一,短時間內就風靡全國,帶給人們新的出行體驗,某共享單車運營公司的市場研究人員為了解公司的經營狀況,對該公司最近六個月內的市場占有率進行了統(tǒng)計,設月份代碼為x,市場占有率為y%),得結果如下表

年月

2019.11

2019.12

2020.1

2020.2

2020.3

2020.4

x

1

2

3

4

5

6

y

9

11

14

13

18

19

1)觀察數(shù)據(jù),可用線性回歸模型擬合yx的關系,請用相關系數(shù)加以說明(精確到0.001);

2)求y關于x的線性回歸方程,并預測該公司20206月份的市場占有率;

3)根據(jù)調研數(shù)據(jù),公司決定再采購一批單車投入市場,現(xiàn)有采購成本分別為1000/輛和800/輛的甲、乙兩款車型,報廢年限不相同.考慮到公司的經濟效益,該公司決定先對這兩款單車各100輛進行科學模擬測試,得到兩款單車使用壽命統(tǒng)計如下表:

報廢年限

車輛數(shù)

車型

1

2

3

4

總計

甲款

10

40

30

20

100

乙款

15

35

40

10

100

經測算,平均每輛單車每年可以為公司帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數(shù)年,且用頻率估計每輛單車使用壽命的概率,以每輛單車產生利潤的期望值為決策依據(jù),如果你是該公司的負責人,你會選擇采購哪款車型?

參考數(shù)據(jù):,,.

參考公式,相關系數(shù),回歸方程中斜率和截距的最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),在平行四邊形中,,,,分別為,的中點.現(xiàn)把四邊形沿折起,如圖(2)所示,連結,

1)求證:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面ABCD,.

1)求證:平面PAD;

2)若EPC的中點,求直線BE與平面PAD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在中,分別是邊上的中點,將沿折起到的位置,使如圖2

(Ⅰ)求證:平面平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,直線與圓相切.

1)求橢圓的方程;

2)過點的直線與橢圓交于不同兩點,線段的中垂線為,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程,點在直線上,直線與曲線交于兩點.

1)求曲線的普通方程及直線的參數(shù)方程;

2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若實數(shù),滿足的取值范圍為________

查看答案和解析>>

同步練習冊答案