對于拋物線y2=4x上任意一點(diǎn)Q,點(diǎn)P(a,0)滿足|PQ|≥|a|,則a的取值范圍是(  )
A.(-∞,0)B.(-∞,2]C.[0,2]D.(0,2)
B
設(shè)點(diǎn)Q的坐標(biāo)為(,y0),由|PQ|≥|a|,得+(-a)2≥a2,整理得(+16-8a)≥0,∵≥0,
+16-8a≥0,即a≤2+恒成立.而2+的最小值為2,所以a≤2.選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),直線,動點(diǎn)P到點(diǎn)F的距離與到直線的距離相等.
(1)求動點(diǎn)P的軌跡C的方程;(2)直線與曲線C交于A,B兩點(diǎn),若曲線C上存在點(diǎn)D使得四邊形FABD為平行四邊形,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸的拋物線上有一點(diǎn)A(,m),A點(diǎn)到拋物線焦點(diǎn)的距離為1.
(1)求該拋物線的方程;
(2)設(shè)M(x0,y0)為拋物線上的一個定點(diǎn),過M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過定點(diǎn)(x0+2,-y0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}的通項(xiàng)公式為an=
1
n(n+1)
(n∈N*)
,其前n項(xiàng)和
Sn
=
9
10
,則雙曲線
x2
n+1
-
y2
n
=1
的漸近線方程為(  )
A.y=±
2
2
3
x
B.y=±
3
2
4
x
C.y=±
3
10
10
x
D.y=±
10
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)C(1,0),點(diǎn)A、B是⊙O:x2+y2=9上任意兩個不同的點(diǎn),且滿足·=0,設(shè)P為弦AB的中點(diǎn).

(1)求點(diǎn)P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點(diǎn):它到直線x=-1的距離恰好等于到點(diǎn)C的距離?若存在,求出這樣的點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為(,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C恒有兩個不同的交點(diǎn)A和B,且·>2(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,分別是軸和軸上的動點(diǎn),若以為直徑的圓與直線相切,則圓面積的最小值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),過點(diǎn)M(4,0)的直線l與拋物線C2分別相交于A ,B兩點(diǎn).
(1)如圖所示,若,求直線l的方程;
(2)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對稱點(diǎn)P在拋物線C2上,直線l與橢圓C1有公共點(diǎn),求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓錐曲線 (t為參數(shù))的焦點(diǎn)坐標(biāo)是            .

查看答案和解析>>

同步練習(xí)冊答案