【題目】提高過江大橋的車輛通行的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)

的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,就會造成堵塞,此時車流速度為0;當(dāng)

車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當(dāng)時,

車流速度是車流密度的一次函數(shù).

(1)當(dāng)時,求函數(shù)的表達(dá)式;

(2)如果車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù)) (單位:輛/小時),那么當(dāng)車流密度為多大時,車流量可以達(dá)到最大,并求出最大值.(精確到輛/小時).

【答案】(1);(2) .

【解析】試題分析:

本題考查函數(shù)模型在實(shí)際中的應(yīng)用以及分段函數(shù)最值的求法。1)根據(jù)題意用分段函數(shù)并結(jié)合待定系數(shù)法求出函數(shù)的關(guān)系式。(2首先由題意得到的解析式,再根據(jù)分段函數(shù)最值的求得求得最值即可。

試題解析

(1)由題意:當(dāng)時, ;

當(dāng)時,設(shè)

由已知得 解得

綜上可得

(2)依題意并由(1)可得

①當(dāng)時, 為增函數(shù),

∴當(dāng)時, 取得最大值,且最大值為1200 。

②當(dāng)時, ,

∴當(dāng)時, 取得最大值,且最大值為

所以的最大值為。

故當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大,且大值為3333輛/小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

1)求的值;

2)若,求的取值范圍;

3)設(shè)函數(shù),其中.若函數(shù)的圖象有且只有一個交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S= (b2+c2﹣a2),則∠B=(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代號x

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計(jì)公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足:對任意恒成立,當(dāng)時,.

1求證上是單調(diào)遞增函數(shù);

2已知,解關(guān)于的不等式

3,且不等式對任意恒成立.求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角AB、C所對的邊分別為a、b、c,且

1)判斷△ABC的形狀,并加以證明;

2)當(dāng)c = 1時,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考察某種中成藥預(yù)防流感的效果,抽樣調(diào)查40人,得到如下數(shù)據(jù)

患流感

未患流感

服用藥

2

18

未服用藥

8

12

根據(jù)表中數(shù)據(jù),通過計(jì)算統(tǒng)計(jì)量K2= ,并參考以下臨界數(shù)據(jù):

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

若由此認(rèn)為“該藥物有效”,則該結(jié)論出錯的概率不超過(
A.0.05
B.0.025
C.0.01
D.0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商定購,決定當(dāng)一次定購量超過100件時,每多定購一件,訂購的全部零件的出廠單價就降低0.02元.根據(jù)市場調(diào)查,銷售商一次定購量不會超過500件.

(1)設(shè)一次定購量為x件,服裝的實(shí)際出廠總價為P元,寫出函數(shù)P=f(x)的表達(dá)式;

(2)當(dāng)銷售商一次定購了450件服裝時,該服裝廠獲得的利潤是多少元?

(服裝廠售出一件服裝的利潤=實(shí)際出廠價格-成本)

查看答案和解析>>

同步練習(xí)冊答案