【題目】已知{an}是首項(xiàng)為a1 , 公比為q的等比數(shù)列,Sn是{an}的前n項(xiàng)和.Sn= ;若am+an=as+at , 則m+n=s+t;Sk , S2k﹣Sk , S3k﹣S2k成等比數(shù)列(k∈N).
以上說法正確的有( )個(gè).
A.0
B.1
C.2
D.3

【答案】A
【解析】解:{an}是首項(xiàng)為a1 , 公比為q的等比數(shù)列,Sn是{an}的前n項(xiàng)和
若q=1,則Sn=n,若q≠1,則Sn= ,故錯(cuò)誤,
若aman=asat , 則m+n=s+t,故錯(cuò)誤
設(shè)an=(﹣1)n ,
則S2=0,S4﹣S2=0,S6﹣S4=0,
∴此數(shù)列不是等比數(shù)列,故Sk , S2k﹣Sk , S3k﹣S2k(k為常數(shù)且k∈N)不一定是等比數(shù)列說法錯(cuò)誤,
故以上說法正確的有0個(gè),
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,程序框圖的輸出結(jié)果為﹣18,那么判斷框①表示的“條件”應(yīng)該是(

A.i>10?
B.i>9?
C.i>8?
D.i>7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017南通二模19】已知函數(shù),,其中e為自然對(duì)數(shù)的底數(shù).

(1)求函數(shù)在x1處的切線方程;

(2)若存在,使得成立,其中為常數(shù),

求證:

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州市2016—2017學(xué)年度第一學(xué)期期末檢測(本小題滿分16分)

如圖,橢圓,圓,過橢圓的上頂點(diǎn)的直線:分別交圓、橢圓于不同的兩點(diǎn)、設(shè)

(1)若點(diǎn)點(diǎn)求橢圓的方程;

(2)若,求橢圓的離心率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q、R、S分別在正方體的四條棱上,并且是所在棱的中點(diǎn),則直線PQ與RS是異面直線的一個(gè)圖是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2012年“雙節(jié)”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/t)分成六段:(60,65),[65,70),[70,75),[80,85),[85,90)后得到如圖的頻率分布直方圖.
(1)某調(diào)查公司在采樣中,用到的是什么抽樣方法?
(2)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值.
(3)若從車速在[60,70)的車輛中任抽取2輛,求車速在[65,70)的車輛至少有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017揚(yáng)州一模如圖,矩形ABCD是一個(gè)歷史文物展覽廳的俯視圖,點(diǎn)E在AB上,在梯形BCDE區(qū)域內(nèi)部展示文物,DE是玻璃幕墻,游客只能在ADE區(qū)域內(nèi)參觀.在AE上點(diǎn)P處安裝一可旋轉(zhuǎn)的監(jiān)控?cái)z像頭,為監(jiān)控角,其中M、N在線段DE(含端點(diǎn))上,且點(diǎn)M在點(diǎn)N的右下方.經(jīng)測量得知:AD=6米,AE=6米,AP=2米,.記(弧度),監(jiān)控?cái)z像頭的可視區(qū)域PMN的面積S平方米.

(1)求S關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;(參考數(shù)據(jù):

(2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(
A.y=x3 , x∈R
B.y=sinx,x∈R
C.y=﹣x,x∈R
D.y=( x , x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(﹣2,0),點(diǎn)B(2, )在橢圓C上,直線y=kx(k≠0)與橢圓C交于E,F(xiàn)兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N
(Ⅰ)求橢圓C的方程;
(Ⅱ)在x軸上是否存在點(diǎn)P,使得無論非零實(shí)數(shù)k怎樣變化,總有∠MPN為直角?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案