【題目】設函數(shù).(且)
(1)分別判斷當及時函數(shù)的奇偶性;
(2)在且的條件下,將(1)的結論加以推廣,使命題(1)成為推廣后命題的特例,并對推廣的結論加以證明.
【答案】(1)時,既不是奇函數(shù)也不是偶函數(shù),時,是奇函數(shù).;(2)時,既不是奇函數(shù)也不是偶函數(shù),時,是奇函數(shù).證明見解析.
【解析】
(1)根據(jù)奇偶性定義判斷;
(2)時,既不是奇函數(shù)也不是偶函數(shù),時,是奇函數(shù).根據(jù)奇偶性定義證明即可.
(1)時,,定義域為,,
此時,,且,既不是奇函數(shù)也不是偶函數(shù),
時,,定義域為,且,
此時,,是奇函數(shù).
(2)時,既不是奇函數(shù)也不是偶函數(shù),時,是奇函數(shù).
與(1)類似,時,由,得函數(shù)定義域是,,與既不相等也不是相反數(shù),因此既不是奇函數(shù)也不是偶函數(shù),
時,由,得定義域是,,,是奇函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】為了解某市的交通狀況,現(xiàn)對其6條道路進行評估,得分分別為:5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如表
評估的平均得分 | (0,6] | (6,8] | (8,10] |
全市的總體交通狀況等級 | 不合格 | 合格 | 優(yōu)秀 |
(1)求本次評估的平均得分,并參照上表估計該市的總體交通狀況等級.
(2)用簡單隨機抽樣方法從這6條道路中抽取2條,它們的得分組成一個樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超0.5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列滿足:
(1)求的值;
(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(3)設假設恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一款擊鼓小游戲規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得50分,沒有出現(xiàn)音樂則扣除150分(即獲得-150分).設每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.
(Ⅰ)玩一盤游戲,至少出現(xiàn)一次音樂的概率是多少?
(Ⅱ)設每盤游戲獲得的分數(shù)為,求的分布列;
(Ⅲ)許多玩過這款游戲的人都發(fā)現(xiàn),玩的盤數(shù)越多,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關知識分析其中的道理.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側).過點任作一條直線與圓:相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前n項和為,已知,.
(1)求的值;
(2)求數(shù)列的通項公式;
(3)令,,證明:對任意,均有(要求不得使用數(shù)學歸終法).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com