【題目】已知橢圓C的右焦點F2和上頂點B在直線上,過橢圓右焦點的直線交橢圓于兩點.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)求面積的最小值.

【答案】(1)(2)

【解析】

(1)由已知可得橢圓的右焦點為F2(1,0),上頂點為B, 故c=1,b=,可求橢圓標(biāo)準(zhǔn)方程.

(2)設(shè)Mx1,y1),Nx2,y2),直線的方程為,與橢圓方程聯(lián)立得:,利用韋達定理得到 ,又,求得的最小值,即可得的最小值.

(1)橢圓C的右焦點F2和上頂點B在直線上,

橢圓的右焦點為F2(1,0),上頂點為B

c=1,b=a2=b2+c2=4,∴所求橢圓標(biāo)準(zhǔn)方程為

(2)設(shè)Mx1y1),Nx2,y2),

直線的方程為

聯(lián)立得:,

=,

,

,

函數(shù)上為增函數(shù),

故當(dāng)時,,

此時三角形的面積取得最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐中,平面平面 則三棱錐的外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學(xué).某校國學(xué)社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有(

A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).(

1)分別判斷當(dāng)時函數(shù)的奇偶性;

2)在的條件下,將(1)的結(jié)論加以推廣,使命題(1)成為推廣后命題的特例,并對推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,四邊形為等腰梯形, , ,四邊形為正方形,平面平面.

(Ⅰ)若點是棱的中點,求證: ∥平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,試確定此二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,若存在區(qū)間使得

(Ⅰ)上是單調(diào)函數(shù);

(Ⅱ)上的值域是,

則稱區(qū)間為函數(shù)倍值區(qū)間

下列函數(shù)中存在倍值區(qū)間的有______________(填上所有你認為正確的序號)

;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房地產(chǎn)公司新建小區(qū)有A、B兩種戶型住宅,其中A戶型住宅每套面積為100平方米,B戶型住宅每套面積為80平方米,該公司準(zhǔn)備從兩種戶型住宅中各拿出12套銷售給內(nèi)部員工,表是這24套住宅每平方米的銷售價格:(單位:萬元平方米):

房號

1

2

3

4

5

6

7

8

9

10

11

12

A戶型

2.6

2.7

2.8

2.8

2.9

3.2

2.9

3.1

3.4

3.3

3.4

3.5

B戶型

3.6

3.7

3.7

3.9

3.8

3.9

4.2

4.1

4.1

4.2

4.3

4.5

1)根據(jù)表格數(shù)據(jù),完成下列莖葉圖,并分別求出A,B兩類戶型住宅每平方米銷售價格的中位數(shù);

A戶型

B戶型

2.

3.

4.

2)該公司決定對上述24套住房通過抽簽方式銷售,購房者根據(jù)自己的需求只能在其中一種戶型中通過抽簽方式隨機獲取房號,每位購房者只有一次抽簽機會,小明是第一位抽簽的員工,經(jīng)測算其購買能力最多為320萬元,抽簽后所抽得住房價格在其購買能力范圍內(nèi)則確定購買,否則,將放棄此次購房資格,為了使其購房成功的概率更大,他應(yīng)該選擇哪一種戶型抽簽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯誤的是( )

A.兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1

B.設(shè),且,則

C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬帶越狹窄,其模型擬合的精度越高

D.已知變量xy滿足關(guān)系,變量yz正相關(guān),則xz負相關(guān)

查看答案和解析>>

同步練習(xí)冊答案