【題目】下列命題錯誤的是( )
A.兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對值越接近于1
B.設(shè),且,則
C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬帶越狹窄,其模型擬合的精度越高
D.已知變量x和y滿足關(guān)系,變量y與z正相關(guān),則x與z負(fù)相關(guān)
【答案】B
【解析】
對于A,根據(jù)相關(guān)系數(shù)的意義;對于B,概率密度函數(shù)的圖象關(guān)于對稱可判斷;對
于C,根據(jù)殘差圖的意義判斷;對于D,和負(fù)相關(guān),因為y與z正相關(guān),所以x與z負(fù)相關(guān);
解:對于A,根據(jù)相關(guān)系數(shù)的意義知,A正確
對于B,由,知,概率密度函數(shù)的圖象關(guān)于對稱
故,
所以,故B錯誤
對于C,根據(jù)殘差圖的意義,C正確
對于D,變量x和y滿足關(guān)系,所以和負(fù)相關(guān),因為y與z正相關(guān),所以x與z負(fù)相關(guān),故D正確
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的右焦點F2和上頂點B在直線上,過橢圓右焦點的直線交橢圓于兩點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把邊長為a的等邊三角形鐵皮剪去三個相同的四邊形(如圖陰影部分)后,用剩余部分做成一個無蓋的正三棱柱形容器(不計接縫),設(shè)容器的高為x,容積為.
(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(2)求當(dāng)x為多少時,容器的容積最大?并求出最大容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項和為,已知,.
(1)求的值;
(2)求數(shù)列的通項公式;
(3)令,,證明:對任意,均有(要求不得使用數(shù)學(xué)歸終法).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.
(1)求一件手工藝品質(zhì)量為B級的概率;
(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.
①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;
②記1件手工藝品的利潤為X元,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】約束條件圍成的區(qū)域面積為,且z=2x+y的最大值和最小值分別為m和n,則m﹣n=( 。
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅行社為某旅行團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為元.旅行團(tuán)中的每個人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅行團(tuán)的人數(shù)不超過人時,飛機(jī)票每張元;若旅行團(tuán)的人數(shù)多于人時,則予以優(yōu)惠,每多人,每個人的機(jī)票費(fèi)減少元,但旅行團(tuán)的人數(shù)最多不超過人.設(shè)旅行團(tuán)的人數(shù)為人,飛機(jī)票價格元,旅行社的利潤為元.
(1)寫出每張飛機(jī)票價格元與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;
(2)當(dāng)旅行團(tuán)人數(shù)為多少時,旅行社可獲得最大利潤?求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com