【題目】有一款擊鼓小游戲規(guī)則如下:每盤(pán)游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂(lè),要么不出現(xiàn)音樂(lè);每盤(pán)游戲擊鼓三次后,出現(xiàn)一次音樂(lè)獲得10分,出現(xiàn)兩次音樂(lè)獲得20分,出現(xiàn)三次音樂(lè)獲得50分,沒(méi)有出現(xiàn)音樂(lè)則扣除150分(即獲得-150分).設(shè)每次擊鼓出現(xiàn)音樂(lè)的概率為,且各次擊鼓出現(xiàn)音樂(lè)相互獨(dú)立.
(Ⅰ)玩一盤(pán)游戲,至少出現(xiàn)一次音樂(lè)的概率是多少?
(Ⅱ)設(shè)每盤(pán)游戲獲得的分?jǐn)?shù)為,求的分布列;
(Ⅲ)許多玩過(guò)這款游戲的人都發(fā)現(xiàn),玩的盤(pán)數(shù)越多,分?jǐn)?shù)沒(méi)有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析其中的道理.
【答案】(1)(2)見(jiàn)解析(3)見(jiàn)解析
【解析】分析:(Ⅰ)設(shè)表示事件“玩一盤(pán)游戲,至少出現(xiàn)一次音樂(lè)”,則;(Ⅱ)的可能取值為,利用組合知識(shí),根據(jù)獨(dú)立事件概率公式求出各隨機(jī)變量對(duì)應(yīng)的概率,從而可得分布列;(Ⅲ)結(jié)合(Ⅱ),利用期望公式可得的數(shù)學(xué)期可得每盤(pán)所得分?jǐn)?shù)的期望為負(fù)值,故玩的盤(pán)數(shù)越多,所得分?jǐn)?shù)反而可能減少.
詳解:(Ⅰ)設(shè)表示事件“玩一盤(pán)游戲,至少出現(xiàn)一次音樂(lè)”,
則.
(Ⅱ)的可能值為-150,10,20,50,則
,,
,,
所以,的分布列為:
-150 | 10 | 20 | 50 | |
(Ⅲ)由(Ⅱ)可知, ,
即每盤(pán)所得分?jǐn)?shù)的期望為負(fù)值,故玩的盤(pán)數(shù)越多,所得分?jǐn)?shù)反而可能減少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的單調(diào)減區(qū)間為.
(1)求、的值及極值;
(2)若對(duì),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在六條棱長(zhǎng)分別為2、3、3、4、5、5的所有四面體中,最大的體積是多少?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中, 平面,底面是菱形, , , . 為與的交點(diǎn), 為棱上一點(diǎn),
(1)證明:平面⊥平面;
(2)若三棱錐的體積為,
求證: ∥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)求曲線在點(diǎn)處的切線方程.
(Ⅱ)若直線為曲線的切線,且經(jīng)過(guò)原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD是菱形,∠BCD=120°,PA⊥底面ABCD,PA=4,AB=2.
(I)求證:平面PBD⊥平面PAC;
(Ⅱ)過(guò)AC的平面交PD于點(diǎn)M若平面AMC把四面體P﹣ACD分成體積相等的兩部分,求二面角A﹣MC﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有甲、乙等5人排成一排照相,按下列要求各有多少種不同的排法?求:
(1)甲、乙不能相鄰;
(2)甲、乙相鄰且都不站在兩端;
(3)甲、乙之間僅相隔1人;
(4)按高個(gè)子站中間,兩側(cè)依次變矮(五人個(gè)子各不相同)的順序排列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,點(diǎn)為左焦點(diǎn),過(guò)點(diǎn)作軸的垂線交橢圓于、兩點(diǎn),且.
(1)求橢圓的方程;
(2)若是橢圓上異于點(diǎn)的兩點(diǎn),且直線的傾斜角互補(bǔ),則直線的斜率是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若方程在區(qū)間(0,+)上有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)若存在實(shí)數(shù),且,使得,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com