【題目】在平面直角坐標(biāo)系中,橢圓:經(jīng)過(guò)點(diǎn),且點(diǎn)為其一個(gè)焦點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓與軸的兩個(gè)交點(diǎn)為,,不在軸上的動(dòng)點(diǎn)在直線上運(yùn)動(dòng),直線,分別與橢圓交于點(diǎn),,證明:直線通過(guò)一個(gè)定點(diǎn),且的周長(zhǎng)為定值.
【答案】(1);(2)證明見(jiàn)解析.
【解析】
(1)根據(jù)題意可得a,b的方程組,解方程組即得橢圓的標(biāo)準(zhǔn)方程;(2)不妨設(shè),.為直線上一點(diǎn)(),,.求出M,N的坐標(biāo),再寫(xiě)出直線MN的方程,再證明直線通過(guò)一個(gè)定點(diǎn),求出此時(shí)的周長(zhǎng)為定值.
(1)根據(jù)題意可得,
可解得,
∴橢圓的方程為.
(2)不妨設(shè),.
為直線上一點(diǎn)(),,.
直線方程為,直線方程為.
點(diǎn),的坐標(biāo)滿(mǎn)足方程組,
可得.
點(diǎn),的坐標(biāo)滿(mǎn)足方程組,
可得,
,.
直線的方程為,
即.
故直線恒過(guò)定點(diǎn).
又∵,是橢圓的焦點(diǎn),
∴周長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(,為參數(shù))
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于、兩點(diǎn),點(diǎn)的直角坐標(biāo)為,若,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)的動(dòng)直線與圓相交于,兩點(diǎn),是中點(diǎn),與直線相交于.
(1)當(dāng)與垂直時(shí),求的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)探究是否與直線的傾斜角有關(guān)?若無(wú)關(guān),求出其值;若有關(guān),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面上一動(dòng)點(diǎn)P到定點(diǎn)C(1,0)的距離與它到直線的距離之比為.
(1)求點(diǎn)P的軌跡方程;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),A,B兩點(diǎn)在點(diǎn)P的軌跡上,F是點(diǎn)C關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),則關(guān)于函數(shù)以下說(shuō)法正確的是( )
A. 最大值為1,圖象關(guān)于直線對(duì)稱(chēng)B. 在上單調(diào)遞減,為奇函數(shù)
C. 在上單調(diào)遞增,為偶函數(shù)D. 周期為,圖象關(guān)于點(diǎn)對(duì)稱(chēng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出.在一個(gè)正三角形中,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色三角形代表挖去的部分,黑色三角形為剩下的部分,我們稱(chēng)此三角形為謝爾賓斯基三角形.若在圖(3)內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自謝爾賓斯基三角形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】連接正方體每個(gè)面的中心構(gòu)成一個(gè)正八面體,則該八面體的外接球與內(nèi)切球體積之比為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工企業(yè)2018年年底投入100萬(wàn)元,購(gòu)入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬(wàn)元)
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性
(2)函數(shù),且.若在區(qū)間(0,2)內(nèi)有零點(diǎn),求實(shí)數(shù)m的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com