【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為an的一組正三角形AnBn1Bn的底邊Bn1Bn依次排列在x軸上(B0與坐標(biāo)原點(diǎn)重合).設(shè){an}是首項(xiàng)為a,公差為2的等差數(shù)列,若所有正三角形頂點(diǎn)An在第一象限,且均落在拋物線y2=2px(p>0)上,則a的值為

【答案】2
【解析】解:由題意可得:{an}是首項(xiàng)為a,公差為2的等差數(shù)列, ∴an=a+2(n﹣1).
∴a1=a=OB1 , ∵△A1B0B1是等邊三角形,∴ = , = a.
同理可得:B1B2=a2=a+2, =a+ = , =
A1 ,A2 ,
=2p× , =2p×
解得a=2,p=
所以答案是:2.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握通項(xiàng)公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項(xiàng)等比數(shù)列{bn}滿足:b1=2,b3=8.
(Ⅰ) 求數(shù)列{an},{bn}的通項(xiàng)公式an , bn
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點(diǎn).

(1)求證:平面PAB∥平面EFG;
(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明;
(3)求出D到平面EFG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,已知AB=CC1=2,則異面直線AB1和BC1所成角的余弦值為(
A.0
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(I)函數(shù)在點(diǎn)處的切線與直線垂直,求a的值;

(II)討論函數(shù)的單調(diào)性;

(III)不等式在區(qū)間上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (x∈R)
(1)用定義證明f(x)是增函數(shù);
(2)若g(x)=f(x)﹣a是奇函數(shù),求g(x)在(﹣∞,a]上的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為 .類比到空間,有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

某學(xué)校簡(jiǎn)單隨機(jī)抽樣方法抽取了100名同學(xué),對(duì)其日均課外閱讀時(shí)間:(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:

若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書(shū)迷”

(1)將頻率視為概率,估計(jì)該校4000名學(xué)生中“讀書(shū)迷”有多少人?

(2)從已抽取的8名“讀書(shū)迷”中隨機(jī)抽取4位同學(xué)參加讀書(shū)日宣傳活動(dòng).

①求抽取的4為同學(xué)中有男同學(xué)又有女同學(xué)的概率;

②記抽取的“讀書(shū)迷”中男生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案