【題目】函數(shù).

(I)函數(shù)在點處的切線與直線垂直,求a的值;

(II)討論函數(shù)的單調(diào)性;

(III)不等式在區(qū)間上恒成立,求實數(shù)a的取值范圍.

【答案】(I)(II)當時,函數(shù)f(x)在區(qū)間上是單調(diào)遞增;

時,函數(shù)f(x)在區(qū)間上單調(diào)遞增;在區(qū)間上單調(diào)遞減;在區(qū)間上單調(diào)遞增(III)

【解析】試題分析:(I)求導(dǎo),利用導(dǎo)數(shù)的幾何意義與兩直線垂直的判定進行求解;(II)求導(dǎo),討論二次方程的根的個數(shù)、根的大小關(guān)系,進而判定其單調(diào)性;(III)分離常數(shù),轉(zhuǎn)化為求函數(shù)的求值問題.

試題解析:(I)函數(shù)定義域為

由題意 ,解得.

(II)

(i)當 時,,函數(shù)f(x) 在 上單調(diào)遞增;

(ii)當 時,函數(shù)f(x)在區(qū)間上單調(diào)遞增;在區(qū)間上單調(diào)遞減;在區(qū)間上單調(diào)遞增

(iii)當 時,,函數(shù)f(x) 在 上單調(diào)遞增;

綜上所述:當時,函數(shù)f(x)在區(qū)間上是單調(diào)遞增;

時,函數(shù)f(x)在區(qū)間上單調(diào)遞增;在區(qū)間上單調(diào)遞減;在區(qū)間上單調(diào)遞增

(III)等價于

在區(qū)間(0,1)上,函數(shù)g(x)為減函數(shù);

在區(qū)間上,函數(shù)g(x)為增函數(shù);

所以實數(shù)的范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x (m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù).
(1)求m的值,并確定f(x)的解析式;
(2)若函數(shù)g(x)=loga(f(x)﹣ax+2)在區(qū)間(1,+∞)上恒為正值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過兩直線3x+y﹣5=0,2x﹣3y+4=0的交點,且在兩坐標軸上截距相等的直線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計算下列各式的值,寫出必要的計算過程.
(1)0.064 ﹣(﹣ 0+16 +0.25
(2)(log43+log83)(log32+log92)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長為an的一組正三角形AnBn1Bn的底邊Bn1Bn依次排列在x軸上(B0與坐標原點重合).設(shè){an}是首項為a,公差為2的等差數(shù)列,若所有正三角形頂點An在第一象限,且均落在拋物線y2=2px(p>0)上,則a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C1:y2=2px與橢圓C2 在第一象限的交點為B,O為坐標原點,A為橢圓的右頂點,△OAB的面積為
(1)求拋物線C1的方程;
(2)過A點作直線L交C1于C、D兩點,求線段CD長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明家訂了一份報紙,暑假期間他收集了每天報紙送達時間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.

(1)根據(jù)圖中的數(shù)據(jù)信息,求出眾數(shù)和中位數(shù)(精確到整數(shù)分鐘);

(2)小明的父親上班離家的時間在上午之間,而送報人每天在時刻前后半小時內(nèi)把報紙送達(每個時間點送達的可能性相等),求小明的父親在上班離家前能收到報紙(稱為事件)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C 的參數(shù)方程為 (為參數(shù)),以直角坐標系原點O 為極點,x 軸正半軸為極軸建立極坐標系.

()求曲線C 的極坐標方程;

()設(shè),若l 1 l2與曲線C 相交于異于原點的兩點 A、B ,求AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案