【題目】(本小題滿分12分)

某學(xué)校簡單隨機抽樣方法抽取了100名同學(xué),對其日均課外閱讀時間:(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:

若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書迷”

(1)將頻率視為概率,估計該校4000名學(xué)生中“讀書迷”有多少人?

(2)從已抽取的8名“讀書迷”中隨機抽取4位同學(xué)參加讀書日宣傳活動.

①求抽取的4為同學(xué)中有男同學(xué)又有女同學(xué)的概率;

②記抽取的“讀書迷”中男生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

【答案】(1)320 (2) ,

【解析】試題分析:抽取的100名同學(xué)讀書時間不低于60分鐘的有8人,占,估計出4000名同學(xué)中“讀書迷”的人數(shù),8名同學(xué)中有3名男生5名女生,抽取4名有男生又有女生的對立事件是只抽取4名女生,利用對立事件概率公式求出, 表示抽取的男生人數(shù)可取值為0,1,2,3,分四種情況求出對應(yīng)的概率值及數(shù)學(xué)期望.

試題解析:

(Ⅰ)設(shè)該校4000名學(xué)生中“讀書迷”有x人,則,解得x=320.

所以該校4000名學(xué)生中“讀書迷”有320人.

(Ⅱ)(。┏槿〉4名同學(xué)既有男同學(xué),又有女同學(xué)的概率

P

(ⅱ)X可取0,1,2,3.

P(X=0)=, P(X=1)=,

P(X=2)=, P(X=3)=

X的分布列為:

X

0

1

2

3

P

E(X)=0×+1×+2×+3×

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過原點O,與x軸另一交點的橫坐標(biāo)為4,與y軸另一交點的縱坐標(biāo)為2,
(1)求圓C的方程;
(2)已知點B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長為an的一組正三角形AnBn1Bn的底邊Bn1Bn依次排列在x軸上(B0與坐標(biāo)原點重合).設(shè){an}是首項為a,公差為2的等差數(shù)列,若所有正三角形頂點An在第一象限,且均落在拋物線y2=2px(p>0)上,則a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙流中學(xué)校運動會招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位: ),身高在175以上(包括175)定義為“高個子”,身高在175以 下(不包括175 )定義為“非高個子”.

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中共抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率?

(2)若從身高180以上(包括180)的志愿者中選出男、女各一人,求這兩人身高相差5以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明家訂了一份報紙,暑假期間他收集了每天報紙送達(dá)時間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.

(1)根據(jù)圖中的數(shù)據(jù)信息,求出眾數(shù)和中位數(shù)(精確到整數(shù)分鐘);

(2)小明的父親上班離家的時間在上午之間,而送報人每天在時刻前后半小時內(nèi)把報紙送達(dá)(每個時間點送達(dá)的可能性相等),求小明的父親在上班離家前能收到報紙(稱為事件)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +log2x.
(1)求f(2),f( ),f(4),f( )的值,并計算f(2)+f( ),f(4)+f( );
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點( ,2)在冪函數(shù)f(x)的圖象上,點(2, )在冪函數(shù)g(x)的圖象上,定義h(x)= 求函數(shù)h(x)的最大值及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

某學(xué)校用簡單隨機抽樣方法抽取了100名同學(xué),對其日均課外閱讀時間(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:

t

男同學(xué)人數(shù)

7

11

15

12

2

1

女同學(xué)人數(shù)

8

9

17

13

3

2

若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書迷”.

(1)將頻率視為概率,估計該校4000名學(xué)生中“讀書迷”有多少人?

(2)從已抽取的8名“讀書迷”中隨機抽取4位同學(xué)參加讀書日宣傳活動.

(i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;

(ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為A1B1 , CD的中點.
(1)求| |
(2)求直線EC與AF所成角的余弦值;
(3)求二面角E﹣AF﹣B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案