【題目】已知函數(shù)f(x)= (x∈R)
(1)用定義證明f(x)是增函數(shù);
(2)若g(x)=f(x)﹣a是奇函數(shù),求g(x)在(﹣∞,a]上的取值集合.
【答案】
(1)證明:f(x)=2+ ,
設x1<x2,則f(x1)﹣f(x2)=2× <0,
∴f(x)是增函數(shù)
(2)解:∵g(x)=f(x)﹣a是奇函數(shù),
∴g(0)=f(0)﹣a=3﹣a=0,
∴a=3,
∴g(x)= ﹣1,
∵x≤3,∴0< ≤
∴﹣1<g(x)≤
【解析】(1)利用定義證明步驟,即可證明f(x)是增函數(shù);(2)利用g(x)=f(x)﹣a是奇函數(shù),求出a,即可求g(x)在(﹣∞,a]上的取值集合.
【考點精析】通過靈活運用奇偶性與單調性的綜合,掌握奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調性即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內角A、B、C的對邊分別為a、b、c.己知c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的焦點在x軸上,離心率等于 ,且過點(1, ). (Ⅰ)求橢圓C的標準方程;
(Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A,B兩點,交y軸于M點,若 =λ1 , =λ2 ,求證:λ1+λ2為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函數(shù)的零點;
(2)若函數(shù)在區(qū)間(0,1]上恰有一個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長為an的一組正三角形AnBn﹣1Bn的底邊Bn﹣1Bn依次排列在x軸上(B0與坐標原點重合).設{an}是首項為a,公差為2的等差數(shù)列,若所有正三角形頂點An在第一象限,且均落在拋物線y2=2px(p>0)上,則a的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:CE∥平面PAD;
(2)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙流中學校運動會招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位: ),身高在175以上(包括175)定義為“高個子”,身高在175以 下(不包括175 )定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中共抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率?
(2)若從身高180以上(包括180)的志愿者中選出男、女各一人,求這兩人身高相差5以上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= +log2x.
(1)求f(2),f( ),f(4),f( )的值,并計算f(2)+f( ),f(4)+f( );
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (Ⅰ)當a=﹣2時,求不等式f(x)<g(x)的解集;
(Ⅱ)設a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com