【題目】四名工人一天中生產(chǎn)零件的情況如圖所示,每個(gè)點(diǎn)的橫、縱坐標(biāo)分別表示該工人一天中生產(chǎn)
的Ⅰ型、Ⅱ型零件數(shù),有下列說(shuō)法:
四個(gè)工人中,的日生產(chǎn)零件總數(shù)最大
②日生產(chǎn)零件總數(shù)之和小于日生產(chǎn)零件總數(shù)之和
③日生產(chǎn)Ⅰ型零件總數(shù)之和小于Ⅱ型零件總數(shù)之和
④日生產(chǎn)Ⅰ型零件總數(shù)之和小于Ⅱ型零件總數(shù)之和
則正確的說(shuō)法有__________(寫出所有正確說(shuō)法的序號(hào))
【答案】①②③
【解析】分析:結(jié)合圖形得到:A,B,C,D日生產(chǎn)Ⅰ型零件總數(shù)之和大于Ⅱ型零件總數(shù)之和.
解析:由圖形得:
在①中,四個(gè)工人中,D的日生產(chǎn)零件總數(shù)最大,B生產(chǎn)零件總數(shù)最小,故①正確;
在②中,A,B日生產(chǎn)零件總數(shù)之和小于日生產(chǎn)零件總數(shù)之和,故②正確;
在③中,日生產(chǎn)Ⅰ型零件總數(shù)之和小于Ⅱ型零件總數(shù)之和,故③正確;
在④中,日生產(chǎn)Ⅰ型零件總數(shù)之和大于Ⅱ型零件總數(shù)之和,故④錯(cuò)誤.
故答案為:①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形中, ,等腰梯形中, ,且平面平面.
(1)求證: 平面;
(2)若與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)均相等的四棱錐中, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )
A.∥平面B.平面∥平面
C.直線與直線所成角的大小為D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,平面,,點(diǎn)、分別在線段、上,且,其中,連接,延長(zhǎng)與的延長(zhǎng)線交于點(diǎn),連接.
(Ⅰ)求證:平面;
(Ⅱ)若時(shí),求二面角的正弦值;
(Ⅲ)若直線與平面所成角的正弦值為時(shí),求值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車.每車限坐名同學(xué)(乘同一輛車的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的名同學(xué)中恰有名同學(xué)是來(lái)自于同一年級(jí)的乘坐方式共有_______種(有數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列說(shuō)法正確的是( )
A.若m∥α,n∥α,則 m∥n
B.若α⊥γ,β⊥γ,則α∥β
C.若m⊥α,n⊥β,且α⊥β,則m⊥n.
D.若m∥α,n∥α,且mβ, nβ,則α∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C過點(diǎn)A(2,6),且與直線l1: x+y-10=0相切于點(diǎn)B(6,4).
(1)求圓C的方程;
(2)過點(diǎn)P(6,24)的直線l2與圓C交于M,N兩點(diǎn),若△CMN為直角三角形,求直線l2的斜率;
(3)在直線l3: y=x-2上是否存在一點(diǎn)Q,過點(diǎn)Q向圓C引兩切線,切點(diǎn)為E,F, 使△QEF為正三角形,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義函數(shù),其中x為自變量,a為常數(shù).
(1)若當(dāng)x∈[0,2]時(shí),函數(shù)fa(x)的最小值為﹣1,求a的值;
(2)設(shè)全集U=R,集合A={x|f3(x)≥0},B={x|fa(x)+fa(2﹣x)=f2(2)},且(UA)∩B≠中,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com