【題目】已知直線y=a分別與直線,曲線交于點A,B,則線段AB長度的最小值為______.
【答案】
【解析】
,設與平行的的切線的點為,則切線斜率為,切線方程為,則與, 被直線與切線截得的線段長,就是被直線和曲線截得線段 的最小值,因為取任何值時,被兩平行線截得的線段長相等,所以令,可得,線段 的最小值,故答案為.
【方法點晴】本題主要考查利用導數(shù)求曲線切線方程以及最值問題以及數(shù)學的轉(zhuǎn)化與劃歸思想,屬于難題.轉(zhuǎn)化與劃歸思想解決高中數(shù)學問題的一種重要思想方法,是中學數(shù)學四種重要的數(shù)學思想之一,尤其在解決知識點較多以及知識跨度較大的問題發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是將題設條件研究透,這樣才能快速找準突破點.以便將問題轉(zhuǎn)化為我們所熟悉的知識領域,進而順利解答,希望同學們能夠熟練掌握并應用于解題當中. 本題中,將被直線和曲線截得線段 的最小值轉(zhuǎn)化為,被直線和曲線截得線段 的最小值,是解題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當時,能實現(xiàn)要求嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,側面為正三角形,側面底面,、分別為棱、的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在棱上是否存在一點,使得平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)存在兩個極值,求的取值范圍;并證明:函數(shù)存在唯一零點.
(2)若存在實數(shù),,使,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,點為左焦點,過點作軸的垂線交橢圓于、兩點,且.
(1)求橢圓的方程;
(2)在圓上是否存在一點,使得在點處的切線與橢圓相交于、兩點滿足?若存在,求的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓的離心率為,橢圓上動點到一個焦點的距離的最小值為.
(1)求橢圓C的標準方程;
(2)已知過點的動直線l與橢圓C交于 A,B 兩點,試判斷以AB為直徑的圓是否恒過定點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四名工人一天中生產(chǎn)零件的情況如圖所示,每個點的橫、縱坐標分別表示該工人一天中生產(chǎn)
的Ⅰ型、Ⅱ型零件數(shù),有下列說法:
四個工人中,的日生產(chǎn)零件總數(shù)最大
②日生產(chǎn)零件總數(shù)之和小于日生產(chǎn)零件總數(shù)之和
③日生產(chǎn)Ⅰ型零件總數(shù)之和小于Ⅱ型零件總數(shù)之和
④日生產(chǎn)Ⅰ型零件總數(shù)之和小于Ⅱ型零件總數(shù)之和
則正確的說法有__________(寫出所有正確說法的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com