【題目】在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別為、,定點(diǎn)A(-2,0),B(2,0).
(1) 若橢圓C上存在點(diǎn)T,使得,求橢圓C的離心率的取值范圍;
(2) 已知點(diǎn)在橢圓C上.
①求橢圓C的方程;
②記M為橢圓C上的動(dòng)點(diǎn),直線(xiàn)AM,BM分別與橢圓C交于另一點(diǎn)P,Q,若, .求λ+μ的值.
【答案】(1);(2)①;②6
【解析】試題分析:(1)先求出動(dòng)點(diǎn)的軌跡方程,設(shè)出橢圓方程,與的軌跡方程聯(lián)立求出 ,根據(jù)橢圓橫坐標(biāo)的有界性求出 的范圍,離心率表示為 的函數(shù),求出函數(shù)的值域即可得結(jié)果;(2)①根據(jù)點(diǎn)在橢圓C上,結(jié)合(1)的結(jié)論可得橢圓方程,②設(shè)出點(diǎn) ,根據(jù), 分別求出 用表示, 列方程化簡(jiǎn)即可得結(jié)果.
試題解析:(1)設(shè)點(diǎn)T(x,y),由=,得(x+2)2+y2=2[(x+1)2+y2],即x2+y2=2.
由得y2=m2-m,(其中:m=)
因此0≤m2-m≤m,解得1≤m≤2,所以橢圓的離心率e=∈.
(2) ①橢圓C的方程為.
②設(shè)M(x0,y0),P(x1,y1),Q(x2,y2),
得從而
因?yàn)?/span>+y=1,所以+(λy1)2=1,
即λ2+2λ(λ-1)x1+2(λ-1)2-1=0.
因?yàn)?/span>+y=1,代入得2λ(λ-1)x1+3λ2-4λ+1=0.
由題意知,λ≠1,故x1=-,所以x0=,同理可得x0=.
因此=,所以λ+μ=6為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)= , .
(1)若函數(shù)在處取得極值,求的值,并判斷在處取得極大值還是極小值.
(2)若在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)求證:當(dāng)時(shí),關(guān)于的不等式在區(qū)間上無(wú)解.(其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定一個(gè)數(shù)列{an},在這個(gè)數(shù)列里,任取m(m≥3,m∈N*)項(xiàng),并且不改變它們?cè)跀?shù)列{an}中的先后次序,得到的數(shù)列稱(chēng)為數(shù)列{an}的一個(gè)m階子數(shù)列.已知數(shù)列{an}的通項(xiàng)公式為an= (n∈N*,a為常數(shù)),等差數(shù)列a2,a3,a6是數(shù)列{an}的一個(gè)3階子數(shù)列.
(1)求a的值;
(2)等差數(shù)列b1,b2,…,bm是{an}的一個(gè)m (m≥3,m∈N*) 階子數(shù)列,且b1= (k為常數(shù),k∈N*,k≥2),求證:m≤k+1;
(3)等比數(shù)列c1,c2,…,cm是{an}的一個(gè)m (m≥3,m∈N*) 階子數(shù)列,
求證:c1+c2+…+cm≤2- .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中, , , 為的中點(diǎn), 為的中點(diǎn),且為正三角形.
(1)求證: 平面;
(2)若,三棱錐的體積為1,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分13分)已知?jiǎng)訄A過(guò)定點(diǎn)且與軸截得的弦的長(zhǎng)為.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程;
(Ⅱ)已知點(diǎn),動(dòng)直線(xiàn)和坐標(biāo)軸不垂直,且與軌跡相交于兩點(diǎn),試問(wèn):在軸上是否存在一定點(diǎn),使直線(xiàn)過(guò)點(diǎn),且使得直線(xiàn),,的斜率依次成等差數(shù)列?若存在,請(qǐng)求出定點(diǎn)的坐標(biāo);否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)的圖象全部在直線(xiàn)的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“拋階磚”是國(guó)外游樂(lè)場(chǎng)的典型游戲之一.參與者只需將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個(gè)階磚(邊長(zhǎng)為2.1的正方形)的范圍內(nèi)(不與階磚相連的線(xiàn)重疊),便可獲大獎(jiǎng).不少人被高額獎(jiǎng)金所吸引,紛紛參與此游戲,但很少有人得到獎(jiǎng)品,請(qǐng)用所學(xué)的概率知識(shí)解釋這是為什么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)已知函數(shù)的最小值為,若實(shí)數(shù)且,求的
最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com