【題目】給定一個(gè)數(shù)列{an},在這個(gè)數(shù)列里,任取m(m≥3,m∈N*)項(xiàng),并且不改變它們在數(shù)列{an}中的先后次序,得到的數(shù)列稱為數(shù)列{an}的一個(gè)m階子數(shù)列.已知數(shù)列{an}的通項(xiàng)公式為an= (n∈N*,a為常數(shù)),等差數(shù)列a2,a3,a6是數(shù)列{an}的一個(gè)3階子數(shù)列.
(1)求a的值;
(2)等差數(shù)列b1,b2,…,bm是{an}的一個(gè)m (m≥3,m∈N*) 階子數(shù)列,且b1= (k為常數(shù),k∈N*,k≥2),求證:m≤k+1;
(3)等比數(shù)列c1,c2,…,cm是{an}的一個(gè)m (m≥3,m∈N*) 階子數(shù)列,
求證:c1+c2+…+cm≤2- .
【答案】(1)a=0(2)見解析(3)見解析
【解析】試題分析:(1)利用等差數(shù)列的定義及其性質(zhì)即可得出;(2)設(shè)等差數(shù)列的公差為,由,可得,再利用等差數(shù)列的通項(xiàng)公式及其不等式的性質(zhì)即可證明;(3)設(shè)(),等比數(shù)列的公比為,由,可得,從而(, ),再利用等比數(shù)列的前項(xiàng)和公式、函數(shù)的單調(diào)性即可得出.
試題解析:(1)因?yàn)?/span>成等差數(shù)列,所以.
又因?yàn)?/span>, , ,
代入得,解得.
(2)設(shè)等差數(shù)列的公差為,因?yàn)?/span>,所以,
從而,所以.
又因?yàn)?/span>,所以,即,所以
又因?yàn)?/span>,所以.
(3)設(shè),等比數(shù)列的公比為,因?yàn)?/span>,所以,從而(, ).
所以,
設(shè)函數(shù),( , ).
當(dāng)時(shí),函數(shù)為單調(diào)增函數(shù),因?yàn)楫?dāng),
所以,所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
()若,求函數(shù)的單調(diào)區(qū)間.
()若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍.
()過坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是在點(diǎn)處的切線.
(Ⅰ)求的解析式;
(Ⅱ)求證: ;
(Ⅲ)設(shè),其中.若對恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓: 的長軸長為4,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)作一條不與坐標(biāo)軸平行的直線,若交橢圓與、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),以為極點(diǎn), 軸的正半軸建立極坐標(biāo)系,曲線是圓心在極軸上且經(jīng)過極點(diǎn)的圓,射線與曲線交于點(diǎn)
(Ⅰ)求曲線的普通方程及的直角坐標(biāo)方程;
(Ⅱ)在極坐標(biāo)系中, 是曲線的兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別為、,定點(diǎn)A(-2,0),B(2,0).
(1) 若橢圓C上存在點(diǎn)T,使得,求橢圓C的離心率的取值范圍;
(2) 已知點(diǎn)在橢圓C上.
①求橢圓C的方程;
②記M為橢圓C上的動(dòng)點(diǎn),直線AM,BM分別與橢圓C交于另一點(diǎn)P,Q,若, .求λ+μ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形和梯形所在平面互相垂直, , , .
(Ⅰ)求證: 平面;
(Ⅱ)當(dāng)的長為何值時(shí),二面角的大小為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年12月10日,我國科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng),以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長勢與海撥高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為,并對它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)的值評(píng)定人工種植的青蒿的長勢等級(jí),若,則長勢為一級(jí);若,則長勢為二極;若,則長勢為三級(jí),為了了解目前人工種植的青蒿的長勢情況,研究人員隨機(jī)抽取了10塊青蒿人工種植地,得到如下結(jié)果:
種植地編號(hào) | |||||
種植地編號(hào) | |||||
(1)若該地有青蒿人工種植地180個(gè),試估計(jì)該地中長勢等級(jí)為三級(jí)的個(gè)數(shù);
(2)從長勢等級(jí)為一級(jí)的青蒿人工種植地中隨機(jī)抽取兩個(gè),求這兩個(gè)人工種植地的綜合指標(biāo)均為4個(gè)概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com