精英家教網 > 高中數學 > 題目詳情

【題目】已知口袋里裝有4個大小相同的小球,其中兩個標有數字1,兩個標有數字2

1)從口袋里任意取一球,求取到標有數字2的球的概率;

2)第一次從口袋里任意取一球,放回口袋里后第二次再任意取一球,記第一次與第二次取到小球上的數字之和為.當為何值時,其發(fā)生的概率最大?說明理由.

【答案】1;(2)數字和為3時概率最大,理由詳見解析.

【解析】

1)利用古典概型的概率計算公式即可求解.

2)設標號為1的球為,標號為2的球為,采用列舉法求出所有基本事件個數,然后分別求出數字和為2、3、4的基本事件個數,利用古典概型的概率計算公式求出各自的概率即可求解.

解:(14個球中標有數字2的球有2個,故所求概率為,

2)設標號為1的球為,,標號為2的球為,

所有基本事件包括:

,,,,,

,,,,

,,,共16種.

設事件表示數字和為2

包括:,,,共4種,

故有

設事件表示數字和為3,

包括:,,,,

,,,共8種,

設事件表示數字和為4,

包括:,,,共4種,

數字和為3時概率最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,給出以下四個命題:

的圖象關于軸對稱;

上是減函數;

是周期函數;

上恰有兩個零點.

其中真命題的序號是______.(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線,曲線為參數),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系.

1)求的極坐標方程;

2)射線的極坐標方程為,若分別與交于異于極點的兩點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某水果批發(fā)商經銷某種水果(以下簡稱水果),購入價為300/袋,并以360/袋的價格售出,若前8小時內所購進的水果沒有售完,則批發(fā)商將沒售完的水果以220/袋的價格低價處理完畢(根據經驗,2小時內完全能夠把水果低價處理完,且當天不再購入).該水果批發(fā)商根據往年的銷量,統計了100水果在每天的前8小時內的銷售量,制成如下頻數分布條形圖.

表示水果一天前8小時內的銷售量,表示水果批發(fā)商一天經營水果的利潤,表示水果批發(fā)商一天批發(fā)水果的袋數.

1)若,求的函數解析式;

2)假設這100天中水果批發(fā)商每天購入水果15袋或者16袋,分別計算該水果批發(fā)商這100天經營水果的利潤的平均數,以此作為決策依據,每天應購入水果15袋還是16袋?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年春節(jié)前后,中國爆發(fā)新型冠狀病毒(SARS-Cov-2)如圖所示為124日至216日中國內地(除湖北以外的)感染新型冠狀病毒新增人數的折線圖,為了預測分析數據的變化規(guī)律,建立了與時間變量的不同時間段的兩個線性回歸模型.根據124日至23日的數據(時間變量的值依次為12,3,45,6,7,8,910,11)建立模型①:;根據24日至216日的數據(時間變量的值依次為12,1314,15,16,17,18,1920,21,22,2324)建立模型②:.

1

24

1

25

1

26

1

27

1

28

1

29

1

30

1

31

2

1

2

2

2

3

1

2

3

4

5

6

7

8

9

10

11

332

174

298

337

448

593

690

737

720

648

926

2

4

2

5

2

6

2

7

2

8

2

9

2

10

2

11

2

12

2

13

2

14

2

15

2

16

12

13

14

15

16

17

18

19

20

21

22

23

24

830

741

693

683

559

464

431

377

377

299

259

211

160

1)求出兩個回歸直線方程;(計算結果取整數)

2)中國政府為了人民的生命安全,聽取專家意見,了解了病毒信息,并迅速做出一系列的隔離防護措施,但新冠狀病毒在世界范圍內爆發(fā)時,某些歐美國家采取放任的態(tài)度,不治療、不隔離、不檢測,甚至不公布,請你用以上數據說明采取一系列措施的必要性,不采取措施的后果.

參考數據:,,,

參考公式:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,直線過右焦點,過點的直線交橢圓,兩點(均不為頂點)

1)求橢圓的方程;

2)已知是橢圓的右頂點,直線,若直線與直線交于點直線與直線交于點,試判斷是否為定值,若是,求出定值,若不是請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求曲線處的切線方程;

2)討論在區(qū)間上的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦距為4.且過點

1)求橢圓E的方程;

2)設,,,過B點且斜率為的直線l交橢圓E于另一點M,交x軸于點Q,直線AM與直線相交于點P.證明:O為坐標原點).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在棱長為1的正方體中,E,F分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( 。

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

查看答案和解析>>

同步練習冊答案