【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動(dòng)點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和( 。

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

【答案】D

【解析】

分別在后,上,左三個(gè)平面得到該四邊形的投影,求其面積和即可.

依題意,設(shè)四邊形D1FBE的四個(gè)頂點(diǎn)在后面,上面,左面的投影點(diǎn)分別為D'F',B'E',則四邊形D1FBE在上面,后面,左面的投影分別如上圖.

所以在后面的投影的面積為S=1×1=1

在上面的投影面積S=D'E'×1=DE×1=DE,

在左面的投影面積S=B'E'×1=CE×1=CE,

所以四邊形D1FBE所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和

S=S+S+S=1+DE+CE=1+CD=2

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|x22x3≤0},B{x|x22mx+m24≤0,xR,mR}

1)若ABA,求實(shí)數(shù)m的取值;

2)若AB{x|0≤x≤3},求實(shí)數(shù)m的值;

(3)若A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車已成為一種時(shí)髦的新型環(huán)保交通工具,某共享單車公司為了拓展市場,對兩個(gè)品牌的共享單車在編號分別為的五個(gè)城市的用戶人數(shù)(單位:十萬)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下:

城市

品牌

1

2

3

4

5

A品牌

3

4

12

6

8

B品牌

4

3

7

9

5

(Ⅰ)若共享單車用戶人數(shù)超過50萬的城市稱為“優(yōu)城”,否則稱為“非優(yōu)城”,據(jù)此判斷能否有85%的把握認(rèn)為“優(yōu)城”和共享單車品牌有關(guān)?

(Ⅱ)若不考慮其它因素,為了拓展市場,對A品牌要從這五個(gè)城市選擇三個(gè)城市進(jìn)行宣傳,

(ⅰ)求城市2被選中的概率;

(ⅱ)求在城市2被選中的條件下城市3也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下給出了4個(gè)命題:

1)兩個(gè)長度相等的向量一定相等;

2)相等的向量起點(diǎn)必相同;

3)若,且,則;

4)若向量的模小于的模,則

其中正確命題的個(gè)數(shù)共有(

A.3 個(gè)B.2 個(gè)C.1 個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列與等比數(shù)列是非常數(shù)的實(shí)數(shù)列,設(shè).

(1)請舉出一對數(shù)列,使集合中有三個(gè)元素;

(2)問集合中最多有多少個(gè)元素?并證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系已知一動(dòng)圓經(jīng)過點(diǎn)且在軸上截得的弦長為4,設(shè)動(dòng)圓圓心的軌跡為曲線

1求曲線的方程

2過點(diǎn)作互相垂直的兩條直線,與曲線交于,兩點(diǎn)與曲線交于,兩點(diǎn),線段的中點(diǎn)分別為,求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖像與軸無交點(diǎn),求的取值范圍;

(2)若方程在區(qū)間上存在實(shí)根,求的取值范圍;

(3)設(shè)函數(shù),,當(dāng)時(shí)若對任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)F作垂直于x軸的直線與拋物線交于A,B兩點(diǎn),且以線段AB為直徑的圓過點(diǎn).

(1)求拋物線C的方程;

(2)設(shè)過點(diǎn)的直線分別與拋物線C交于點(diǎn)D,E和點(diǎn)G,H,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某學(xué)校的特長班有50名學(xué)生,其中有體育生20名,藝術(shù)生30名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組[50,55),第二組[55,60),…,第五組[70,75],按上述分組方法得到的頻率分布直方圖如圖所示.因?yàn)閷W(xué)習(xí)專業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若前兩組的學(xué)生中體育生有8名.

(1)根據(jù)頻率分布直方圖及題設(shè)數(shù)據(jù)完成下列2×2列聯(lián)表.

心率小于60次/分

心率不小于60次/分

合計(jì)

體育生

20

藝術(shù)生

30

合計(jì)50

(2)根據(jù)(1)中表格數(shù)據(jù)計(jì)算可知,________(填“有”或“沒有”)99.5%的把握認(rèn)為“心率小于60次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)”.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案