【題目】已知某學校的特長班有50名學生,其中有體育生20名,藝術生30名,在學校組織的一次體檢中,該班所有學生進行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數據分成五組,第一組[50,55),第二組[55,60),…,第五組[70,75],按上述分組方法得到的頻率分布直方圖如圖所示.因為學習專業(yè)的原因,體育生常年進行系統(tǒng)的身體鍛煉,藝術生則很少進行系統(tǒng)的身體鍛煉,若前兩組的學生中體育生有8名.
(1)根據頻率分布直方圖及題設數據完成下列2×2列聯(lián)表.
心率小于60次/分 | 心率不小于60次/分 | 合計 | |
體育生 | 20 | ||
藝術生 | 30 | ||
合計50 |
(2)根據(1)中表格數據計算可知,________(填“有”或“沒有”)99.5%的把握認為“心率小于60次/分與常年進行系統(tǒng)的身體鍛煉有關”.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1) 見解析;(2) 見解析.
【解析】試題分析:(1)由頻率分布直方圖確定心率小于60次/分的體育生和藝術生人數,心率不小于60次/分的體育生和藝術生人數即可完成表格;
(2)由K2的公式計算,并查表下結論即可.
試題解析:
(1)根據頻率分布直方圖可知,前兩組的學生總數為(0.032+0.008)×5×50=10,又前兩組的學生中體育生有8名,所以前兩組的學生中藝術生有2名,故2×2列聯(lián)表如下:
心率小于60次/分 | 心率不小于60次/分 | 合計 | |
體育生 | 8 | 12 | 20 |
藝術生 | 2 | 28 | 30 |
合計 | 10 | 40 | 50 |
(2)由(1)中數據知,K2=≈8.333>7.879,故有99.5%的把握認為“心率小于60次/分與常年進行系統(tǒng)的身體鍛煉有關”.
科目:高中數學 來源: 題型:
【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( )
A. 有最小值B. 有最大值C. 為定值3D. 為定值2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現(xiàn)對某市工薪階層關于“樓市限購令”的態(tài)度進行調查,隨機抽調了人,他們月收入的頻數分布及對“樓市限購令”贊成人數如下表.
月收入(單位百元) | ||||||
頻數 | ||||||
贊成人數 |
(1)由以上統(tǒng)計數據填下面列聯(lián)表,并問是否有的把握認為“月收入以元為分界點對“樓市限購令”的態(tài)度有差異;
月收入不低于百元的人數 | 月收入低于百元的人數 | 合計 | |
贊成 | ______________ | ______________ | ______________ |
不贊成 | ______________ | ______________ | ______________ |
合計 | ______________ | ______________ | ______________ |
(2)若對在、的被調查者中各隨機選取兩人進行追蹤調查,記選中的人中不贊成“樓市限購令”的人數為,求隨機變量的分布列及數學期望.
參考公式:,其中.
參考值表:
|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某糧食店經銷小麥,年銷售量為6000千克,每千克小麥進貨價為2.8元,銷售價為3.4元,全年進貨若干次,每次的進貨量均為千克(),運費為100元/次,并且全年小麥的總存儲費用為元.
(1)用(千克)表示該糧食店經銷小麥的年利潤(元);
(2)每次進貨量為多少千克時,能使年利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數在上的單調遞增區(qū)間;
(2)將函數的圖象向左平移個單位長度,再將圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到函數的圖象.求證:存在無窮多個互不相同的整數,使得.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對任意實數,定義函數,已知函數,,記.
(1)若對于任意實數,不等式恒成立,求實數的取值范圍;
(2)若,且,求使得等式成立的的取值范圍;
(3)在(2)的條件下,求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數越多,費率也就越高,具體浮動情況如下表(其中浮動比率是在基準保費上上下浮動):
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責任道路交通事故 | 下浮 | |
上兩個年度未發(fā)生有責任道路交通事故 | 下浮 | |
上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮 | |
上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | ||
上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮 | |
上一個年度發(fā)生有責任道路交通死亡事故 | 上浮 |
某機構為了研究某一品牌普通座以下私家車的投保情況,隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數量 |
(Ⅰ)求這輛車普通座以下私家車在第四年續(xù)保時保費的平均值(精確到元)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.假設購進一輛事故車虧損元,一輛非事故車盈利元,且各種投保類型車的頻率與上述機構調查的頻率一致.試完成下列問題:
①若該銷售商店內有六輛(車齡已滿三年)該品牌二手車,某顧客欲在該店內隨機挑選輛車,求這輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進輛車(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答下列各題:
(1)已知扇形的周長為10cm,面積為4cm2,求扇形圓心角的弧度數.
(2)已知一扇形的圓心角是72°,半徑等于20cm,求扇形的面積.
(3)已知一扇形的周長為40cm,求它的半徑和圓心角取什么值時,才能使扇形的面積最大?最大面積是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com