【題目】已知函數(shù)f(x)=2cosxsin(x﹣ )+ .
(1)求函數(shù)f(x)的對稱軸方程;
(2)若方程sin2x+2|f(x+ )|﹣m+1=0在x∈ 上有三個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.
【答案】
(1)
解:f(x)=2cosxsin(x﹣ )+ = sinxcosx﹣ =sin(2x﹣ ),
∴函數(shù)f(x)的對稱軸方程x= ,k∈Z;.
(2)
解:方程sin2x+2|f(x+ )|﹣m+1=0可化為方程sin2x+2|sin2x|=m﹣1.
令g(x)=
若方程有三個(gè)實(shí)數(shù)解,則m﹣1=1或0<m﹣1<
∴m=2或1<m<1+
【解析】(1)利用差角的正弦公式、二倍角公式、輔助角公式,化簡函數(shù),即可求函數(shù)f(x)的對稱軸方程;(2)方程sin2x+2|f(x+ )|﹣m+1=0可化為方程sin2x+2|sin2x|=m﹣1.令g(x)= ,根據(jù)方程有三個(gè)實(shí)數(shù)解,則m﹣1=1或0<m﹣1< ,即可求實(shí)數(shù)m的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,解不等式;
(2)若存在實(shí)數(shù),使得不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,設(shè)命題p:橢圓C: + =1的焦點(diǎn)在x軸上;命題q:直線l:x﹣y+m=0與圓O:x2+y2=9有公共點(diǎn). 若命題p、命題q中有且只有一個(gè)為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩個(gè)非零向量 與 不共線.
(1)若 = + , =2 +8 , =3( ﹣ ).求證:A,B,D三點(diǎn)共線;
(2)試確定實(shí)數(shù)k,使k + 和 +k 共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)已知△ABC的內(nèi)角分別是A,B,C,A為銳角,且f ,求cosA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實(shí)數(shù)m的范圍;
(2)在方程表示圓時(shí),該圓與直線l:x+2y﹣4=0相交于M、N兩點(diǎn),且|MN|= ,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過直線3x+4y﹣2=0與直線2x+y+2=0的交點(diǎn)P,且垂直于直線x﹣2y﹣1=0.
(1)求直線l的方程;
(2)求直線l關(guān)于原點(diǎn)O對稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(11)的值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】ABCD為空間四邊形,AB=CD,AD=BC,AB≠AD,M,N分別是對角線AC與BD的中點(diǎn),則MN與( )
A.AC,BD之一垂直
B.AC,BD都垂直
C.AC,BD都不垂直
D.AC,BD不一定垂直
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com