【題目】函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(11)的值等于(
A.
B.
C.
D.

【答案】C
【解析】解:由函數(shù)y=Asin(ωx+)(A>0,ω>0)的部分圖象可得 A=2,=0,且 × =4﹣0,∴ω= . ∴函數(shù)y=2sin( x),且函數(shù)的周期為8.
由于f(1)+f(2)+f(3)+…f(8)=0,
∴f(1)+f(2)+f(3)+…f(11)=f(1)+f(2)+f(3)=2sin +2sin +2sin =2+2
故選C.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的值,需要了解函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合P={x|2x2﹣5x+2≤0},函數(shù)y=log2(ax2+2)的定義域?yàn)镾
(1)若P∩S≠,求實(shí)數(shù)a的取值范圍
(2)若方程log2(ax2+2)=2在 上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2cosxsin(x﹣ )+
(1)求函數(shù)f(x)的對(duì)稱軸方程;
(2)若方程sin2x+2|f(x+ )|﹣m+1=0在x∈ 上有三個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣2x﹣8≤0,x∈R},B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }.
(1)若A∩B=[2,4],求實(shí)數(shù)m的值;
(2)設(shè)全集為R,若ARB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只口袋內(nèi)裝有大小相同的5只球,其中3只白球2只黑球,從中一次摸出兩只球.
(1)共有多少個(gè)基本事件,并列出.
(2)摸出的兩只球都是白球的概率.
(3)摸出的兩只球是一黑一白的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)向量 的夾角為60°且| |=| |=1,如果 ,
(1)證明:A、B、D三點(diǎn)共線.
(2)試確定實(shí)數(shù)k的值,使k的取值滿足向量 與向量 垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =3 1﹣2 2 , =4 1+ 2 , 其中 1=(1,0), 2=(0,1),求:
(1) 和| + |的值;
(2) 夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某;锸抽L(zhǎng)期以面粉和大米為主食,面食每100 g含蛋白質(zhì)6個(gè)單位,含淀粉4個(gè)單位,售價(jià)0.5元,米食每100 g含蛋白質(zhì)3個(gè)單位,含淀粉7個(gè)單位,售價(jià)0.4元,學(xué)校要求給學(xué)生配制盒飯,每盒盒飯至少有8個(gè)單位的蛋白質(zhì)和10個(gè)單位的淀粉,問(wèn)應(yīng)如何配制盒飯,才既科學(xué)又費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A,B兩點(diǎn),且AB=2 時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案