【題目】在統(tǒng)計(jì)調(diào)查中,問(wèn)卷的設(shè)計(jì)是一門(mén)很大的學(xué)問(wèn),特別是對(duì)一些敏感性問(wèn)題.例如學(xué)生在考試中有無(wú)作弊現(xiàn)象,社會(huì)上的偷稅漏稅等,更要精心設(shè)計(jì)問(wèn)卷.設(shè)法消除被調(diào)查者的顧慮,使他們能夠如實(shí)回答問(wèn)題,否則被調(diào)查者往往會(huì)拒絕回答,或不提供真實(shí)情況.為了調(diào)查中學(xué)生中的早戀現(xiàn)象,隨機(jī)抽出200名學(xué)生,調(diào)查中使用了兩個(gè)問(wèn)題.①你的血型是A型或B(資料:我國(guó)人口型血比例41%,型血比例28%型血比例24%.型血比例7% ).②你是否有早戀現(xiàn)象,讓被調(diào)查者擲兩枚骰子,點(diǎn)數(shù)之和為奇數(shù)的學(xué)生如實(shí)回答第一個(gè)問(wèn)題.點(diǎn)數(shù)之和為偶數(shù)的學(xué)生如實(shí)回答第二個(gè)問(wèn)題,回答的人往一個(gè)盒子中放一個(gè)小石子,回答的人什么都不放,后來(lái)在盒子中收到了57個(gè)小石子.

1)試計(jì)算擲兩枚骰子點(diǎn)數(shù)之和為偶數(shù)的機(jī)率;

2)你能否估算出中學(xué)生早戀人數(shù)的百分比?

【答案】(1);(2).

【解析】

1)先計(jì)算拋擲兩枚骰子的所有可能,再找出滿足題意的可能,用古典概型的概率計(jì)算公式即可求得;

2)根據(jù)(1)中所求,結(jié)合參考數(shù)據(jù),先求得關(guān)于血型問(wèn)題回答是的同學(xué)數(shù)量,再求出回答是早戀同學(xué)的數(shù)量,進(jìn)而算出早戀比例.

1)拋擲兩枚骰子,總共有36種可能;

其中滿足點(diǎn)數(shù)之和為偶數(shù)有以下18中可能:

故滿足題意的概率.

故擲兩枚骰子點(diǎn)數(shù)之和為偶數(shù)的機(jī)率為.

(2)由(1)可知,點(diǎn)數(shù)之和為偶函數(shù)和奇數(shù)的概率相等,

則可估算有100名同學(xué)回答第一個(gè)問(wèn)題,100名同學(xué)回答第二個(gè)問(wèn)題.

根據(jù)參考數(shù)據(jù),回答第一個(gè)問(wèn)題,選擇是的有人;

故回答第二個(gè)問(wèn)題,選擇是的有人.

故早戀人數(shù)的占比為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說(shuō):作品獲得一等獎(jiǎng)”; 乙說(shuō):作品獲得一等獎(jiǎng)”;

丙說(shuō):兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)德育處為了解全校學(xué)生的上網(wǎng)情況,在全校隨機(jī)抽取了40名學(xué)生(其中男、女生人數(shù)各占一半)進(jìn)行問(wèn)卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男、女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:,得到如圖所示的頻率分布直方圖.

1)寫(xiě)出女生組頻率分布直方圖中的值;

2)求抽取的40名學(xué)生中月上網(wǎng)次數(shù)不少于15的學(xué)生人數(shù);

3)在抽取的40名學(xué)生中從月上網(wǎng)次數(shù)不少于20的學(xué)生中隨機(jī)抽取3人,并用表示隨機(jī)抽取的3人中男生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買(mǎi)2臺(tái)機(jī)器的客戶,推出兩種超過(guò)質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過(guò)2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過(guò)4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購(gòu)買(mǎi)2臺(tái)這種機(jī)器。現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)購(gòu)買(mǎi)哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺(tái)數(shù)

5

10

20

15

以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過(guò)質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

(1)求X的分布列;

(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了對(duì)某種商品進(jìn)行合理定價(jià),需了解該商品的月銷(xiāo)售量(單位:萬(wàn)件)與月銷(xiāo)售單價(jià)(單位:元/件)之間的關(guān)系,對(duì)近個(gè)月的月銷(xiāo)售量和月銷(xiāo)售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測(cè)數(shù)據(jù)如表所示:

月銷(xiāo)售單價(jià)(元/件)

月銷(xiāo)售量(萬(wàn)件)

1)若用線性回歸模型擬合之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說(shuō)明理由;

2)若用模型擬合之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為,請(qǐng)用說(shuō)明哪個(gè)回歸模型的擬合效果更好;

3)已知該商品的月銷(xiāo)售額為(單位:萬(wàn)元),利用(2)中的結(jié)果回答問(wèn)題:當(dāng)月銷(xiāo)售單價(jià)為何值時(shí),商品的月銷(xiāo)售額預(yù)報(bào)值最大?(精確到

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為1,有下列四個(gè)命題:

與平面所成角為;

②三棱錐與三棱錐的體積比為;

③過(guò)點(diǎn)作平面,使得棱,,在平面上的正投影的長(zhǎng)度相等,則這樣的平面有且僅有一個(gè);

④過(guò)作正方體的截面,設(shè)截面面積為,則的最小值為.

上述四個(gè)命題中,正確命題的序號(hào)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大型中華傳統(tǒng)文化電視節(jié)目《中國(guó)詩(shī)詞大會(huì)》以“賞中華詩(shī)詞,尋文化基因,品生活之美”為宗旨,深受廣大觀眾喜愛(ài),各基層單位也通過(guò)各種形式積極組織、選拔和推薦參賽選手.某單位制定規(guī)則如下:(1)凡報(bào)名參賽的詩(shī)詞愛(ài)好者必須先后通過(guò)筆試和面試,方可獲得入圍正賽的推薦資格;(2)筆試成績(jī)不低于85分的選手進(jìn)入面試,面試成績(jī)最高的3人獲得推薦資格.在該單位最近組織的一次選拔活動(dòng)中,隨機(jī)抽取了一個(gè)筆試成績(jī)的樣本,據(jù)此繪制成頻率分布直方圖(如圖.同時(shí),也繪制了所有面試成績(jī)的莖葉圖(如圖2,單位:分).

(Ⅰ)估計(jì)該單位本次報(bào)名參賽的詩(shī)詞愛(ài)好者的總?cè)藬?shù);

(Ⅱ)若從面試成績(jī)高于(不含)中位數(shù)的選手中隨機(jī)選取3人,設(shè)其中獲得推薦資格的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)求函數(shù)的極值;

(2)設(shè),對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】低碳經(jīng)濟(jì)時(shí)代,文化和旅游兩大產(chǎn)業(yè)逐漸成為我國(guó)優(yōu)先發(fā)展的“綠色朝陽(yáng)產(chǎn)業(yè)”.為了解某市的旅游業(yè)發(fā)展情況,某研究機(jī)構(gòu)對(duì)該市2019年游客的消費(fèi)情況進(jìn)行隨機(jī)調(diào)查,得到頻數(shù)分布表及頻率分布直方圖.

旅游消費(fèi)(千元)

頻數(shù)(人)

10

60

1)由圖表中數(shù)據(jù),求的值及游客人均消費(fèi)估計(jì)值(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值為代表)

2)該機(jī)構(gòu)利用最小二乘法得到20132017年該市的年旅游人次(千萬(wàn)人次)與年份代碼的線性回歸模型:.

注:年份代碼15分別對(duì)應(yīng)年份20132017

①試求20132017年的年旅游人次的平均值;

②據(jù)統(tǒng)計(jì),2018年該市的年旅游人次為9千萬(wàn)人次.建立20132018年該市年旅游人次(千萬(wàn)人次)與年份代碼的線性回歸方程,并估計(jì)2019年該市的年旅游收入.

注:年旅游收入=年旅游人次×人均消費(fèi)

參考數(shù)據(jù):.參考公式:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案