【題目】已知函數(shù)f(x)= ,
(1)畫出函數(shù)f(x)的圖象;
(2)求f(f(3))的值;
(3)求f(a2+1)(a∈R)的最小值.
【答案】
(1)解:作出函數(shù)圖象如右圖所示
(2)解:∵f(3)=log23,∴0<f(3)<2,
∴f(f(3))=f(log23)=2 = =
(3)解:由函數(shù)圖象可知f(x)在[1,2]上是減函數(shù),在(2,+∞)上是增函數(shù),
∵a2+1≥1,
∴當a2+1=2時,f(a2+1)取得最小值f(2)=1.
【解析】(1)在每個區(qū)間段作出函數(shù)圖像,(2)代入解析式,得到f(f(3))的值,(3)由圖象得出f(x)的單調(diào)性,故當a2+1=2時,f(a2+1)取得最小值f(2)=1.
【考點精析】本題主要考查了函數(shù)的圖象和函數(shù)的最值及其幾何意義的相關(guān)知識點,需要掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值;利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖在四棱錐P﹣ABCD中,底面ABCD是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,設(shè)E、F分別為PC、BD的中點.
(1)求證:EF∥平面PAD;
(2)求證:面PAB⊥平面PDC;
(3)求二面角B﹣PD﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=2,BC=2 ,M,N分別是CC1 , BC的中點,點P在直線A1B1上,且 .
(1)證明:無論λ取何值,總有AM⊥PN;
(2)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),當x∈[0,+∞)時,f(x)=2x﹣2,則不等式f(log2x)>0的解集為( )
A.(0, )
B.( ,1)∪(2,+∞)
C.(2,+∞)
D.(0, )∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓C1: +y2=1,x軸被曲線C2:y=x2﹣b截得的線段長等于C1的長半軸長.
(1)求實數(shù)b的值;
(2)設(shè)C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A、B,直線MA、MB分別與C1相交于D、E.
①證明: =0;
②記△MAB,△MDE的面積分別是S1 , S2 . 若 =λ,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,關(guān)于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6個不同實數(shù)解,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(ax2﹣x+1),其中a>0且a≠1.
(1)當a= 時,求函數(shù)f(x)的值域;
(2)當f(x)在區(qū)間 上為增函數(shù)時,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關(guān)于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)作出函數(shù)f(x)的圖象;
(2)直接寫出函數(shù)f(x)的值域;
(3)求 f[f(﹣1)]的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com