【題目】 如圖,要設(shè)計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最?
【答案】當(dāng)廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.
【解析】
設(shè)廣告的高為寬分別為x cm,y cm,則每欄的高和寬分別為x-20,其中x>20,y>25
兩欄面積之和為2(x-20),由此得y=
廣告的面積S=xy=x()=x,
整理得S=
因為x-20>0, 所以S≥2
當(dāng)且僅當(dāng)時等號成立,
此時有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,
即當(dāng)x=140,y=175時,S取得最小值24500,
故當(dāng)廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:,q:.
(1)若p是q充分不必要條件,求實數(shù)的取值范圍;
(2)若“非p”是“非q”的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)與的圖像關(guān)于直線y=x對稱,則的單調(diào)遞增區(qū)間為
A. B. (0,2) C. (2,4) D. (2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型商場去年國慶期間累計生成萬張購物單,從中隨機(jī)抽出張,對每單消費(fèi)金額進(jìn)行統(tǒng)計得到下表:
消費(fèi)金額(單位:元) | |||||
購物單張數(shù) | 25 | 25 | 30 |
由于工作人員失誤,后兩欄數(shù)據(jù)無法辨識,但當(dāng)時記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計出的每單消費(fèi)額的中位數(shù)與平均數(shù)恰好相等.用頻率估計概率,完成下列問題:
(1)估計去年國慶期間該商場累計生成的購物單中,單筆消費(fèi)額超過元的概率;
(2)為鼓勵顧客消費(fèi),該商場計劃在今年國慶期間進(jìn)行促銷活動,凡單筆消費(fèi)超過元者,可抽獎一次.抽獎規(guī)則為:從裝有大小材質(zhì)完全相同的個紅球和個黑球的不透明口袋中,隨機(jī)摸出個小球,并記錄兩種顏色小球的數(shù)量差的絕對值,當(dāng)時,消費(fèi)者可分別獲得價值元、元和元的購物券.求參與抽獎的消費(fèi)者獲得購物券的價值的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)定義:“對于在區(qū)域上有定義的函數(shù)和,若滿足恒成立,則稱曲線為曲線在區(qū)域上的緊鄰曲線”.試問曲線與曲線是否存在相同的緊鄰直線,若存在,請求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輪船公司的一艘輪船每小時花費(fèi)的燃料費(fèi)與輪船航行速度的平方成正比,比例系數(shù)為輪船的最大速度為15海里小時當(dāng)船速為10海里小時,它的燃料費(fèi)是每小時96元,其余航行運(yùn)作費(fèi)用(不論速度如何)總計是每小時150元假定運(yùn)行過程中輪船以速度v勻速航行.
求k的值;
求該輪船航行100海里的總費(fèi)用燃料費(fèi)航行運(yùn)作費(fèi)用的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)P(-1,2)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于.
(1)求直線l的方程.
(2)求圓心在直線l上且經(jīng)過點(diǎn)M(2,1),N(4,-1)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進(jìn)行最后一輪較量, 獲得本場比賽勝利,最終人機(jī)大戰(zhàn)總比分定格.人機(jī)大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.
附: ,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com