【題目】(2016·沈陽期中)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分別為AB、BC的中點(diǎn),點(diǎn)P在以A為圓心,AD為半徑的圓弧上變動(dòng)(如圖所示).若=λ+μ,其中λ,μ∈R,則2λ-μ的取值范圍是______________.
【答案】[-1,1]
【解析】建立如圖所示的直角坐標(biāo)系,設(shè)∠PAE=α,則
A(0,0),E(1,0),D(0,1),F(1.5,0.5),P(cosα,sin α)(0°≤α≤90°).
∵=λ+μ,
∴(cosα,sin α)=λ(-1,1)+μ(1.5,0.5),
∴cosα=-λ+1.5μ,sin α=λ+0.5μ,
∴λ= (3sin α-cosα),μ= (cosα+sin α),
∴2λ-μ=sin α-cosα=sin(α-45°).
∵0°≤α≤90°,∴-45°≤α-45°≤45°,
∴-≤sin(α-45°)≤,
∴-1≤sin(α-45°)≤1.
∴2λ-μ的取值范圍是[-1,1].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的離心率為, , 分別是它的左、右焦點(diǎn),且存在直線,使, 關(guān)于的對(duì)稱點(diǎn)恰好是圓: (, )的一條直徑的兩個(gè)端點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線與拋物線相交于、兩點(diǎn),射線、與橢圓分別相交于、.試探究:是否存在數(shù)集,當(dāng)且僅當(dāng)時(shí),總存在,使點(diǎn)在以線段為直徑的圓內(nèi)?若存在,求出數(shù)集;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí), 恒成立,求范圍;
(Ⅱ)方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若關(guān)于的不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·懷仁期中)已知命題:x∈[-1,2],函數(shù)f(x)=x2-x的值大于0.若∨是真命題,則命題可以是( )
A. x∈(-1,1),使得cos x<
B. “-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間上有零點(diǎn)”的必要不充分條件
C. 直線x=是曲線f(x)=的一條對(duì)稱軸
D. 若x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點(diǎn)處的切線的斜率不小于-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)為何值時(shí), 軸為曲線的切線;
(2)用表示中的最小值,設(shè)函數(shù),討論零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的標(biāo)準(zhǔn)方程為, 為拋物線上一動(dòng)點(diǎn), ()為其對(duì)稱軸上一點(diǎn),直線與拋物線的另一個(gè)交點(diǎn)為.當(dāng)為拋物線的焦點(diǎn)且直線與其對(duì)稱軸垂直時(shí), 的面積為18.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)記,若值與點(diǎn)位置無關(guān),則稱此時(shí)的點(diǎn)為“穩(wěn)定點(diǎn)”,試求出所有“穩(wěn)定點(diǎn)”,若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , 是函數(shù)的極值點(diǎn).
(1)若,求函數(shù)的最小值;
(2)若不是單調(diào)函數(shù),且無最小值,證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com