精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,設橢圓的左焦點為,短軸的兩個端點分別為,且,點上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓和圓分別相切于,兩點,當面積取得最大值時,求直線的方程.

【答案】(Ⅰ) .(Ⅱ) .

【解析】

(Ⅰ) 由,可得;由橢圓經過點,得,求出后可得橢圓的方程.

(Ⅱ)將直線方程與橢圓方程聯立消元后根據判別式為零可得,解方程可得切點坐標為,再根據直線和圓相切得到,然后根據在直角三角形中求出,進而得到,將代入后消去再用基本不等式可得當三角形面積最大時,于是可得,于是直線方程可求.

(Ⅰ)由,可得,①

由橢圓經過點,得,②

由①②得,

所以橢圓的方程為

(Ⅱ)由消去整理得*),

由直線與橢圓相切得,

整理得,

故方程(*)化為,即,

解得,

,則,故

因此

又直線與圓相切,可得

所以,

所以,

式代入上式可得

,

,

所以,當且僅當時等號成立,即取得最大值.

,得

所以直線的方程為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地區(qū)對12歲兒童瞬時記憶能力進行調查,瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學生共有40人,下表為該班學生瞬時記憶能力的調查結果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學生為3.由于部分數據丟失,只知道從這40位學生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為.

視覺

視覺記憶能力

偏低

中等

偏高

超常

聽覺記憶

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

1)試確定的值;

2)從40人中任意抽取3人,設具有聽覺記憶能力或視覺記憶能力偏高或超常的學生人數為,求隨機變量的分布列

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,動點在橢圓上,的周長為6

1)求橢圓的方程;

2)設直線與橢圓的另一個交點為,過分別作直線的垂線,垂足為軸的交點為.若四邊形的面積是面積的3倍,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓)的離心率為,,,,的面積為.

1)求橢圓的方程;

2)設是橢圓上的一點,直線軸交于點,直線軸交于點,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,若過點可作三條直線與曲線相切,則實數的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是函數的導函數,且,則下列說法正確的是___________.

②曲線處的切線斜率最;

③函數存在極大值和極小值;

在區(qū)間上至少有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某手機廠商在銷售200萬臺某型號手機時開展“手機碎屏險”活動、活動規(guī)則如下:用戶購買該型號手機時可選購“手機碎屏險”,保費為元,若在購機后一年內發(fā)生碎屏可免費更換一次屏幕.該手機廠商將在這萬臺該型號手機全部銷售完畢一年后,在購買碎屏險且購機后一年內未發(fā)生碎屏的用戶中隨機抽取名,每名用戶贈送元的紅包,為了合理確定保費的值,該手機廠商進行了問卷調查,統(tǒng)計后得到下表(其中表示保費為元時愿意購買該“手機碎屏險”的用戶比例);

1)根據上面的數據求出關于的回歸直線方程;

2)通過大數據分析,在使用該型號手機的用戶中,購機后一年內發(fā)生碎屏的比例為.已知更換一次該型號手機屏幕的費用為元,若該手機廠商要求在這次活動中因銷售該“手機碎屏險”產生的利潤不少于萬元,能否把保費定為5元?

x

10

20

30

40

50

y

0.79

0.59

0.38

0.23

0.01

參考公式:回歸方程中斜率和截距的最小二乘估計分別為,

參考數據:表中5個值從左到右分別記為,相應的值分別記為,經計算有,其中,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為,設直線軸的交點為,過點且斜率為的直線與橢圓交于兩點,為線段的中點.

(1)若直線的傾斜角為,求的值;

(2)設直線交直線于點,證明:直線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1

1)求橢圓C的方程;

2)設點M為橢圓上第一象限內一動點,A,B分別為橢圓的左頂點和下頂點,直線MBx軸交于點C,直線MAy軸交于點D,求證:四邊形ABCD的面積為定值.

查看答案和解析>>

同步練習冊答案