【題目】如圖,在四棱錐中,底面是菱形,,平面,,點,分別為和中點.
(1)求直線與所成角的正弦值;
(2)求與平面所成角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場建成后對外出租,租賃付費按年收取,標準為:每一個商鋪租賃不超過1年收費20萬元,超過1年的部分每年收取15萬元(不足1年按1年計算).現(xiàn)甲、乙兩人從該商場各自租賃一個商鋪,兩人的租賃時間都不超過3年.設(shè)甲、乙租賃時間不超過1年的概率分別為, ;租賃時間1年以上且不超過2年的概率分別為, .甲、乙租賃相互獨立.
(1)求甲租賃付費為50萬元的概率;
(2)求甲、乙兩人租賃付費相同的概率;
(3)設(shè)甲、乙兩人租賃付費之和為隨機變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象過點,且不等式的解集為.
(1)求的解析式;
(2)若在區(qū)間上有最小值,求實數(shù)的值;
(3)設(shè),若當時,函數(shù)的圖象恒在圖象的上方,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(-2,0),B(2,0),曲線C上的動點P滿足.
(1)求曲線C的方程;
(2)若過定點M(0,-2)的直線l與曲線C有公共點,求直線l的斜率k的取值范圍;
(3)若動點Q(x,y)在曲線C上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當時,解不等式;
(2)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線經(jīng)過,求的值;
(2)若關(guān)于的不等式在上恒成立,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓內(nèi)一點的直線的斜率為,且與橢圓交于兩點,設(shè)直線, (為坐標原點)的斜率分別為,若對任意,存在實數(shù),使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點.
(1)求證: 平面平面;
(2)求證: 平面;
(3)求三棱錐體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com