【題目】如圖所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分別為角A,B,C的對(duì)邊,在四面體PABC中,S1,S2,S3,S分別表示PAB,PBC,PCA,ABC的面積,α,β,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大。寫出對(duì)四面體性質(zhì)的猜想,并證明你的結(jié)論

【答案】S=S1·cos α+S2·cos β+S3·cos γ

析】類比三角形中的結(jié)論,猜想在四面體中的結(jié)論S=S1·cos α+S2·cos β+S3·cos γ.

證明:如圖,設(shè)點(diǎn)在底面的射影為點(diǎn),過點(diǎn)作,交,連接,

就是平面PAB與底面ABC所成的二面角,則,

,

同理,,

,S=S1·cos α+S2·cos β+S3·cos γ.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,, ,平面,中點(diǎn).

)證明:平面;

)設(shè),,,求點(diǎn)到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的個(gè)數(shù)是(

①圓柱的軸截面是過母線的截面中最大的一個(gè);

②用任意一個(gè)平面去截球體得到的截面一定是一個(gè)圓面;

③用任意一個(gè)平面去截圓錐得到的截面一定是一個(gè)圓面.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn), 與直線相交于.

當(dāng)垂直時(shí),求直線的方程,并判斷圓心與直線的位置關(guān)系

當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某工廠開展群眾體育活動(dòng)的情況,擬采用分層抽樣的方法從A,B,C三個(gè)區(qū)中抽取7個(gè)工廠進(jìn)行調(diào)查,已知A,BC區(qū)中分別有18,27,18個(gè)工廠

(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個(gè)數(shù);

(Ⅱ)若從抽取的7個(gè)工廠中隨機(jī)抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這2個(gè)工廠中至少有1個(gè)來自A區(qū)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊的邊長(zhǎng)為4,,分別為邊的中點(diǎn),的中點(diǎn),邊上一點(diǎn),且,將沿折到的位置,使平面平面.

(1)求證:平面平面

(2)設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

知圓極坐標(biāo)方程為,直線參數(shù)方程為參數(shù)直線不同的兩點(diǎn),

(1)出圓坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;

(2)弦長(zhǎng),求直線斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

1寫出曲線的參數(shù)方程,直線的普通方程;

2求曲線上任意一點(diǎn)到直線的距離的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①直線l的方向向量為=(1,﹣1,2),直線m的方向向量=(2,1,﹣),則l與m垂直;

②直線l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),則lα

③平面α、β的法向量分別為=(0,1,3),=(1,0,2),則αβ;

④平面α經(jīng)過三點(diǎn)A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,則u+t=1.

其中真命題的是 .(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案