【題目】如圖所示,在四棱錐中,四邊形為菱形, 為正三角形,且分別為的中點, 平面, 平面

1)求證: 平面;

2)求與平面所成角的正弦值.

【答案】(1)見解析;(2).

【解析】試題分析:1)證明:AD⊥平面PEB,利用四邊形ABCD為菱形,可得ADBC,即可證明BC⊥平面PEB;
2)以E為原點,建立坐標系,求出平面PDC的法向量,利用向量的夾角公式,即可求EF與平面PDC所成角的正弦值.

試題解析:

(1)證明:因為平面, 平面,

所以,

平面平面,所以平面,

由四邊形菱形,得

所以平面

(2)解:

為原點, 分別為軸建立空間直角坐標系,

不妨設(shè)菱形的邊長為2,則,

,

則點

,

設(shè)平面的法向量為,

則由,解得,

不妨令,得;

,

所以與平面所成角的正弦值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別是△ABC中角A,B,C的對邊,且csinB= bcosC.
(1)求角C的大小;
(2)若c=3,sinA=2sinB,求△ABC的面積SABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】蘇州市一木地板廠生產(chǎn)A、B、C三類木地板,每類木地板均有環(huán)保型和普通兩種型號,某月的產(chǎn)量如下表(單位:片):

類型

木地板A

木地板B

木地板C

環(huán)保型

150

200

Z

普通型

250

400

600

按分層抽樣的方法在這個月生產(chǎn)的木地板中抽取50片,其中A類木地板10片.
(1)求Z的值;
(2)用隨機抽樣的方法從B類環(huán)保木地板抽取8片,作為一個樣本,經(jīng)檢測它們的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,其離心率為.

(1)求橢圓的方程;

(2)直線相交于兩點,在軸上是否存在點,使為正三角形,若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x2﹣9x+2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[﹣2,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】宿州某中學N名教師參加“低碳節(jié)能你我他”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下表是年齡的頻數(shù)分布表:

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

25

m

p

75

25


(1)求正整數(shù)m,p,N的值;
(2)用分層抽樣的方法,從第1、3、5組抽取6人,則第1、3、5組各抽取多少人?
(3)在(2)的條件下,從這6人中隨機抽取2人參加學校之間的宣傳交流活動,求恰有1人在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè) ,對任意x∈R,不等式a(cos2x﹣m)+πcosx≥0恒成立,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若f(x)=x3+ax2+bx+c有兩個極值點x1 , x2且f(x1)=x1 , 則關(guān)于x的方程3[(f(x)]2+2af(x)+b=0的不同實根個數(shù)為(
A.2
B.3
C.4
D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)g(x)=ax3+2(1﹣a)x2﹣3ax在區(qū)間(﹣∞, )內(nèi)單調(diào)遞減,則a的取值范圍是

查看答案和解析>>

同步練習冊答案