【題目】如圖,四邊形ABCD是邊長(zhǎng)為2的菱形,平面ABCD,且.

1)求直線AD和平面AEF所成角的大。

2)求二面角E-AF-D的平面角的大小.

【答案】1 2

【解析】

(1)根據(jù)線段的垂直關(guān)系,建立空間直角坐標(biāo)系,計(jì)算直線的方向向量與平面的法向量的夾角的余弦值,即可計(jì)算出線面角的大。

(2)計(jì)算兩個(gè)平面的法向量,通過(guò)平面法向量的夾角的余弦值,計(jì)算出二面角的大小.

解:(1)因?yàn)?/span>,所以B,EFD四點(diǎn)共面,

因?yàn)樗倪呅?/span>ABCD是菱形,所以,設(shè)ACBD的交點(diǎn)為O,

O為坐標(biāo)原點(diǎn),OA,OB以及垂直于平面ABC的方向?yàn)?/span>x,y,z軸,建立空間直角坐標(biāo)系O-xyz如圖所示,

,

設(shè)為平面AEF的一個(gè)法向量,

則有:,即,令可得,

設(shè)直線AD和平面AEF所成角為,則,

所以直線AD和平面AEF所成角為.

2)由(1)可知,平面AEF的一個(gè)法向量為

設(shè)為平面ADF的一個(gè)法向量,

則有:,即,令可得,,

,

所以二面角E-AF-D的平面角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,左頂點(diǎn)為,離心率為,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)經(jīng)過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),,線段的中垂線為.若直線與直線相交于點(diǎn),與直線相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新個(gè)稅法于2019年1月1日進(jìn)行實(shí)施.為了調(diào)查國(guó)企員工對(duì)新個(gè)稅法的滿(mǎn)意程度,研究人員在地各個(gè)國(guó)企中隨機(jī)抽取了1000名員工進(jìn)行調(diào)查,并將滿(mǎn)意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.

(Ⅰ)估計(jì)被調(diào)查的員工的滿(mǎn)意程度的中位數(shù);(計(jì)算結(jié)果保留兩位小數(shù))

(Ⅱ)若按照分層抽樣從,中隨機(jī)抽取8人,再?gòu)倪@8人中隨機(jī)抽取4人,記分?jǐn)?shù)在的人數(shù)為,求的分布列與數(shù)學(xué)期望;

(Ⅲ)以頻率估計(jì)概率,若該研究人員從全國(guó)國(guó)企員工中隨機(jī)抽取人作調(diào)查,記成績(jī)?cè)?/span>的人數(shù)為,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙、丙三位同學(xué)在某次考試中總成績(jī)列前三名,有,,三位學(xué)生對(duì)其排名猜測(cè)如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成績(jī)公布后得知,三人都恰好猜對(duì)了一半,則第一名是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大城市一家餐飲企業(yè)為了了解外賣(mài)情況,統(tǒng)計(jì)了某個(gè)送外賣(mài)小哥某天從9:00到21:00這個(gè)時(shí)間段送的50單外賣(mài).以2小時(shí)為一時(shí)間段將時(shí)間分成六段,各時(shí)間段內(nèi)外賣(mài)小哥平均每單的收入情況如下表,各時(shí)間段內(nèi)送外賣(mài)的單數(shù)的頻率分布直方圖如下圖.

時(shí)間區(qū)間

每單收入(元)

6

5.5

6

6.4

5.5

6.5

(Ⅰ)求頻率分布直方圖中的值,并求這個(gè)外賣(mài)小哥送這50單獲得的收入;

(Ⅱ)在這個(gè)外賣(mài)小哥送出的50單外賣(mài)中男性訂了25單,且男性訂的外賣(mài)中有20單帶飲品,女性訂的外賣(mài)中有10單帶飲品,請(qǐng)完成下面的列聯(lián)表,并回答是否有的把握認(rèn)為“帶飲品和男女性別有關(guān)”?

帶飲品

不帶飲品

總計(jì)

總計(jì)

附:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F為拋物線的焦點(diǎn),過(guò)F且傾斜角為的直線交拋物線于AB兩點(diǎn),.

1)求拋物線的方程:

2)已知為拋物線上一點(diǎn),M,N為拋物線上異于P的兩點(diǎn),且滿(mǎn)足,試探究直線MN是否過(guò)一定點(diǎn)?若是,求出此定點(diǎn);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知半圓,、分別為半圓軸的左、右交點(diǎn),直線過(guò)點(diǎn)且與軸垂直,點(diǎn)在直線上,縱坐標(biāo)為,若在半圓上存在點(diǎn)使,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分12分)袋中裝有黑色球和白色球共7個(gè),從中任取2個(gè)球都是白色球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸出1個(gè)球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后終止.每個(gè)球在每一次被摸出的機(jī)會(huì)都是等可能的,用X表示摸球終止時(shí)所需摸球的次數(shù).

(1)求隨機(jī)變量X的分布列和均值E(X);

(2)求甲摸到白色球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.

(1)求證:AD⊥PB;

(2)求點(diǎn)C到平面PAB的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案