【題目】已知F為拋物線的焦點(diǎn),過(guò)F且傾斜角為的直線交拋物線于A,B兩點(diǎn),.

1)求拋物線的方程:

2)已知為拋物線上一點(diǎn),MN為拋物線上異于P的兩點(diǎn),且滿足,試探究直線MN是否過(guò)一定點(diǎn)?若是,求出此定點(diǎn);若不是,說(shuō)明理由.

【答案】1 2)過(guò)定點(diǎn),

【解析】

(1)設(shè)出直線的方程,聯(lián)立拋物線的方程,根據(jù)韋達(dá)定理即可求解出的值,即可求解出拋物線的方程;

(2)求解出點(diǎn)坐標(biāo),設(shè)出直線的方程,根據(jù)求解出之間的關(guān)系,從而確定出直線所過(guò)的定點(diǎn).

解:(1)由已知,直線AB的方程為

聯(lián)立直線與拋物線,消y可得,,所以,

因?yàn)?/span>,所以

即拋物線的方程為.

2)將代入可得,

不妨設(shè)直線MN的方程為,

聯(lián)立,消x,

則有,

由題意,

化簡(jiǎn)可得,,

代入

此時(shí)直線MN的方程為

所以直線MN過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線和曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的單位長(zhǎng)度.

(1)求曲線和曲線的極坐標(biāo)方程;

(2)設(shè)曲線軸、軸分別交于兩點(diǎn),且線段的中點(diǎn)為,若射線與曲線交于點(diǎn),求兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與直線交于兩點(diǎn),不與軸垂直,圓.

(1)若點(diǎn)在橢圓上,點(diǎn)在圓上,求的最大值;

(2)若過(guò)線段的中點(diǎn)且垂直于的直線過(guò)點(diǎn),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體中,,E,F,P,Q分別為棱的中點(diǎn),則下列結(jié)論正確的是(

A.B.平面EFPQ

C.平面EFPQD.直線所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為2的菱形,,平面ABCD,,且.

1)求直線AD和平面AEF所成角的大。

2)求二面角E-AF-D的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著計(jì)算機(jī)的出現(xiàn),圖標(biāo)被賦予了新的含義,又有了新的用武之地.在計(jì)算機(jī)應(yīng)用領(lǐng)域,圖標(biāo)成了具有明確指代含義的計(jì)算機(jī)圖形.如圖所示的圖標(biāo)是一種被稱之為“黑白太陽(yáng)”的圖標(biāo),該圖標(biāo)共分為3部分.第一部分為外部的八個(gè)全等的矩形,每一個(gè)矩形的長(zhǎng)為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內(nèi)部的白色區(qū)域.在整個(gè)“黑白太陽(yáng)”圖標(biāo)中隨機(jī)取一點(diǎn),則此點(diǎn)取自圖標(biāo)第三部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等軸雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),過(guò)作一條漸近線的垂線且垂足為,.

1)求等軸雙曲線的方程;

2)若過(guò)點(diǎn)且方向向量為的直線交雙曲線兩點(diǎn),求的值;

3)假設(shè)過(guò)點(diǎn)的動(dòng)直線與雙曲線交于、兩點(diǎn),試問(wèn):在軸上是否存在定點(diǎn),使得為常數(shù),若存在,求出的坐標(biāo),若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在夏季降溫和冬季取暖時(shí)減少能源消耗,業(yè)主決定對(duì)房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬(wàn)元,且每年的能源消耗費(fèi)用(萬(wàn)元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.

(1)請(qǐng)解釋的實(shí)際意義,并求的表達(dá)式;

(2)當(dāng)隔熱層噴涂厚度為多少毫米時(shí),業(yè)主所付的總費(fèi)用最少?并求此時(shí)與不建隔熱層相比較,業(yè)主可節(jié)省多少錢(qián)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某地區(qū)年齡在25~55歲的人員中,隨機(jī)抽出100人,了解他們對(duì)今年兩會(huì)的熱點(diǎn)問(wèn)題的看法,繪制出頻率分布直方圖如圖所示,則下列說(shuō)法正確的是( )

A. 抽出的100人中,年齡在40~45歲的人數(shù)大約為20

B. 抽出的100人中,年齡在35~45歲的人數(shù)大約為30

C. 抽出的100人中,年齡在40~50歲的人數(shù)大約為40

D. 抽出的100人中,年齡在35~50歲的人數(shù)大約為50

查看答案和解析>>

同步練習(xí)冊(cè)答案