【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.

(1)求證:AD⊥PB;

(2)求點(diǎn)C到平面PAB的距離.

【答案】(1)見解析;(2)

【解析】

1)取中點(diǎn)為,通過勾股定理證明,再得到平面,從而證明.

2)根據(jù)三棱錐等體積轉(zhuǎn)化,以為底,為高,求出三棱錐的體積,再求出的面積,以為底,到平面的距離為高,從而得到到平面的距離.

1)如圖,取中點(diǎn)為,連接

因?yàn)?/span>

所以四邊形為正方形.

所以

所以.

所以

所以

因?yàn)?/span>平面,平面,所以.

又因?yàn)?/span>

所以平面,

平面,所以

2)連接,設(shè)點(diǎn)到平面的距離為,

因?yàn)?/span>

所以平面,所以.

.

所以.

所以.

所以,所以.

所以點(diǎn)到平面的距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2的菱形,,平面ABCD,,且.

1)求直線AD和平面AEF所成角的大;

2)求二面角E-AF-D的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,底面為正方形, 平面, ,點(diǎn)分別為的中點(diǎn).

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,又點(diǎn)在該橢圓上.

1)求橢圓的方程;

2)若斜率為的直線與橢圓交于不同的兩點(diǎn),,求的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且橢圓過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線交于,兩點(diǎn),點(diǎn)上,是坐標(biāo)原點(diǎn),若,判斷四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某地區(qū)年齡在25~55歲的人員中,隨機(jī)抽出100人,了解他們對今年兩會的熱點(diǎn)問題的看法,繪制出頻率分布直方圖如圖所示,則下列說法正確的是( )

A. 抽出的100人中,年齡在40~45歲的人數(shù)大約為20

B. 抽出的100人中,年齡在35~45歲的人數(shù)大約為30

C. 抽出的100人中,年齡在40~50歲的人數(shù)大約為40

D. 抽出的100人中,年齡在35~50歲的人數(shù)大約為50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鮮花店每天制作兩種鮮花共束,每束鮮花的成本為元,售價元,如果當(dāng)天賣不完,剩下的鮮花作廢品處理.該鮮花店發(fā)現(xiàn)這兩種鮮花每天都有剩余,為此整理了過往100天這兩種鮮花的日銷量(單位:束),得到如下統(tǒng)計(jì)數(shù)據(jù):

種鮮花日銷量

48

49

50

51

天數(shù)

25

35

20

20

兩種鮮花日銷量

48

49

50

51

天數(shù)

40

35

15

10

以這100天記錄的各銷量的頻率作為各銷量的概率,假設(shè)這兩種鮮花的日銷量相互獨(dú)立.

(1)記該店這兩種鮮花每日的總銷量為束,求的分布列.

(2)鮮花店為了減少浪費(fèi),提升利潤,決定調(diào)查每天制作鮮花的量束.以銷售這兩種鮮花的日總利潤的期望值為決策依據(jù),在每天所制鮮花能全部賣完與之中選其一,應(yīng)選哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)平面,分別對應(yīng)復(fù)數(shù),已知,且為常數(shù)).

1)設(shè),用數(shù)學(xué)歸納法證明:

2)寫出數(shù)列的通項(xiàng)公式;

3)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程;

(2)直線為參數(shù))與曲線交于兩點(diǎn),與軸交于,求.

查看答案和解析>>

同步練習(xí)冊答案