【題目】已知函數(shù)yf(x)(x∈R),對(duì)函數(shù)yg(x)(x∈R),定義g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”為函數(shù)yh(x)(x∈R),yh(x)滿足:對(duì)任意的x∈R,兩個(gè)點(diǎn)(xh(x)),(xg(x))關(guān)于點(diǎn)(x,f(x))對(duì)稱.若h(x)是g(x)=關(guān)于f(x)=3xb的“對(duì)稱函數(shù)”,且h(x)>g(x)恒成立,則實(shí)數(shù)b的取值范圍是________

【答案】(2,+∞)

【解析】

根據(jù)“對(duì)稱函數(shù)”的定義可知, =3xb,即h(x)=6x+2b,h(x)>g(x)恒成立,等價(jià)于6x+2b,即3xb恒成立,設(shè)F(x)=3xb,m(x)=,作出兩個(gè)函數(shù)對(duì)應(yīng)的圖象如圖所示,

當(dāng)直線和上半圓相切時(shí),圓心到直線的距離d=2,即|b|=2,∴b=2b=-2 (舍去),即要使h(x)>g(x)恒成立,則b>2,即實(shí)數(shù)b的取值范圍是(2,+∞).

答案:(2,+∞)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a<b<c,
(1)求B的大小;
(2)若a=2, ,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在今年的自主招生考試成績(jī)中隨機(jī)抽取100名考生的筆試成績(jī),分為5組制出頻率分布直方圖如圖所示.

組號(hào)

分組

頻數(shù)

頻率

1

5

0.05

2

35

0.35

3

4

5

10

0.1

(1)求的值.

2)該校決定在成績(jī)較好的3、4、5組用分層抽樣抽取6名學(xué)生進(jìn)行面試,則每組應(yīng)各抽多少名學(xué)生?

(3)在(2)的前提下,從抽到6名學(xué)生中再隨機(jī)抽取2名被甲考官面試,求這2名學(xué)生來(lái)自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點(diǎn).
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},則A∩B=(
A.(﹣∞,﹣1)
B.(﹣1,
C.﹙ ,3﹚
D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.

(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點(diǎn),求CM與平面A1BE所成角的大;
(3)線段BC上是否存在點(diǎn)P,使平面A1DP與平面A1BE垂直?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)+ax,其中aR.

當(dāng)a=﹣1時(shí),求證:f(x)≤0;

對(duì)任意x2≥ex1>0,存在x(﹣1,+∞),使 成立,求a的取值范圍.(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左右焦點(diǎn)分別為, ,左頂點(diǎn)為,上頂點(diǎn)為, 的面積為.

(1)求橢圓的方程;

(2)設(shè)直線 與橢圓相交于不同的兩點(diǎn), 是線段的中點(diǎn).若經(jīng)過(guò)點(diǎn)的直線與直線垂直于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(2,8)在拋物線,直線l和拋物線交于B,C兩點(diǎn),焦點(diǎn)F是三角形ABC的重心,MBC的中點(diǎn)(不在x軸上)

(1)求M點(diǎn)的坐標(biāo);

(2)求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案