【題目】如圖,空間幾何體由兩部分構(gòu)成,上部是一個(gè)底面半徑為1,高為2的圓錐,下部是一個(gè)底面半徑為1,高為2的圓柱,圓錐和圓柱的軸在同一直線上,圓錐的下底面與圓柱的上底面重合,點(diǎn)是圓錐的頂點(diǎn),是圓柱下底面的一條直徑,、是圓柱的兩條母線,是弧的中點(diǎn).

(1)求異面直線所成的角的大;

(2)求點(diǎn)到平面的距離.

【答案】(1);(2).

【解析】

1)以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,利用向量法求出異面直線所成的角的大小即可

2)求出平面的法向量,利用向量法求出點(diǎn)到平面的距離

1)由題意以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,

如圖

, ,

,

異面直線所成的角的大小為

2, , , , ,

設(shè)平面的法向量,則,取,得

點(diǎn)到平面的距離為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠因排污比較嚴(yán)重,決定著手整治,一個(gè)月時(shí)污染度為,整治后前四個(gè)月的污染度如下表:

月數(shù)

污染度

污染度為后,該工廠即停止整治,污染度又開始上升,現(xiàn)用下列三個(gè)函數(shù)模擬從整治后第一個(gè)月開始工廠的污染模式:,,,其中表示月數(shù),、分別表示污染度.

1)問選用哪個(gè)函數(shù)模擬比較合理,并說明理由;

2)若以比較合理的模擬函數(shù)預(yù)測,整治后有多少個(gè)月的污染度不超過

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,,.

1)若,試判斷的奇偶性;

2)若,,證明的圖像是軸對稱圖形,并求出對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某環(huán)線地鐵按內(nèi)、外環(huán)線同時(shí)運(yùn)行,內(nèi)、外環(huán)線的長均為30千米(忽略內(nèi)、外環(huán)線長度差異).

(1)當(dāng)9列列車同時(shí)在內(nèi)環(huán)線上運(yùn)行時(shí),要使內(nèi)環(huán)線乘客最長候車時(shí)間為10分鐘,求內(nèi)環(huán)線列車的最小平均速度;

(2)新調(diào)整的方案要求內(nèi)環(huán)線列車平均速度為25千米/小時(shí),外環(huán)線列車平均速度為30千米/小時(shí).現(xiàn)內(nèi)、外環(huán)線共有18列列車全部投入運(yùn)行,要使內(nèi)外環(huán)線乘客的最長候車時(shí)間之差不超過1分鐘,向內(nèi)、外環(huán)線應(yīng)各投入幾列列車運(yùn)行?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體,,均垂直于平面,,,,

(1)證明:⊥平面

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,為兩非零有理數(shù)列(即對任意的均為有理數(shù)),為一無理數(shù)列(即對任意的為無理數(shù)).

1)已知,并且對任意的恒成立,試求的通項(xiàng)公式.

2)若為有理數(shù)列,試證明:對任意的恒成立的充要條件為

3)已知,,對任意的,恒成立,試計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根),稱為的特征根.

(1)討論函數(shù)的奇偶性,并說明理由;

(2)已知為給定實(shí)數(shù),求的表達(dá)式;

(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù)的單調(diào)性,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為,中心角為,甲由扇形中心出發(fā)沿以每秒2米的速度向快走,同時(shí)乙從出發(fā),沿扇形弧以每秒米的速度向慢跑,記秒時(shí)甲、乙兩人所在位置分別為,,通過計(jì)算,判斷下列說法是否正確:

(1)當(dāng)時(shí),函數(shù)取最小值;

(2)函數(shù)在區(qū)間上是增函數(shù);

(3)若最小,則;

(4)上至少有兩個(gè)零點(diǎn);

其中正確的判斷序號是______(把你認(rèn)為正確的判斷序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中無理數(shù).

(Ⅰ)若函數(shù)有兩個(gè)極值點(diǎn),的取值范圍;

(Ⅱ)若函數(shù)的極值點(diǎn)有三個(gè),最小的記為,最大的記為,的最大值為,的最小值.

查看答案和解析>>

同步練習(xí)冊答案