【題目】某動(dòng)物園要為剛?cè)雸@的小動(dòng)物建造一間兩面靠墻的三角形露天活動(dòng)室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.

(1)若,求的周長(結(jié)果精確到0.01米);

(2)為了使小動(dòng)物能健康成長,要求所建的三角形露天活動(dòng)室面積,的面積盡可能大,當(dāng)為何值時(shí),該活動(dòng)室面積最大?并求出最大面積.

【答案】(1) .

(2) 當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí)為等邊三角形

,.

【解析】分析:(1)中,由正弦定理可得,即可求的周長;

(2)利用余弦定理列出關(guān)系式,將的值代入并利用基本不等式求出的最大值,利用三角形的面積公式求出面積的最大值,以及此時(shí)的值.

詳解:(1)在中,有正弦定理可得,

,

的周長為.

(2)在中,有余弦定理得

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí)為等邊三角形

,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)的距離之比為定值的點(diǎn)所形成的圖形是圓.后來,人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標(biāo)系中,,,點(diǎn)滿足.設(shè)點(diǎn)所構(gòu)成的曲線為,下列結(jié)論正確的是( )

A.的方程為

B.上存在點(diǎn),使得到點(diǎn)的距離為

C.上存在點(diǎn),使得

D.上存在點(diǎn),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場親子游樂場由于經(jīng)營管理不善突然倒閉.在進(jìn)行資產(chǎn)清算時(shí)發(fā)現(xiàn)有3000名客戶辦理的充值會(huì)員卡上還有余額.為了了解客戶充值卡上的余額情況,從中抽取了300名客戶的充值卡余額進(jìn)行統(tǒng)計(jì).其中余額分組區(qū)間為,,,其頻率分布直方圖如圖所示,請你解答下列問題:

(1)求的值;

(2)求余額不低于元的客戶大約為多少人?

(3)根據(jù)頻率分布直方圖,估計(jì)客戶人均損失多少?(用組中值代替各組數(shù)據(jù)的平均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M點(diǎn)為圓心的圓及其上一點(diǎn).

1)設(shè)圓Ny軸相切,與圓M外切,且圓心在直線上,求圓N的標(biāo)準(zhǔn)方程;

2)設(shè)平行于OA的直線l與圓M相交于BC兩點(diǎn)且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中, ,的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為 .

(1)如果,且對于一切正整數(shù),均有,求;

(2)如果對于一切正整數(shù),均有,求;

(3)如果對于一切正整數(shù),均有,證明: 能被8整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,的線性回歸直線方程為,且,之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯(cuò)誤的為

A.變量,之間呈現(xiàn)正相關(guān)關(guān)系B.可以預(yù)測,當(dāng)時(shí),

C.D.由表格數(shù)據(jù)可知,該回歸直線必過點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20189月,臺(tái)風(fēng)“山竹”在沿海地區(qū)登陸,小張調(diào)查了當(dāng)?shù)啬承^(qū)的100戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集到的數(shù)據(jù)分成五組:,,,單位:千元,并作出如下頻率分布直方圖

經(jīng)濟(jì)損失不超過4千元

經(jīng)濟(jì)損失超過4千元

合計(jì)

捐款超過

500

60

捐款不超

500

10

合計(jì)

1臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶居民捐款情況如表格,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4千元有關(guān)?

2將上述調(diào)查得到的頻率視為概率,現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機(jī)抽樣的方法每次抽取一戶居民,連抽3次,記被抽取的3戶居民中自身經(jīng)濟(jì)損失超過4千元的戶數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.

附:臨界值表:

k

隨機(jī)變量:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上任取一點(diǎn),過點(diǎn)軸的垂線段,垂足為,點(diǎn)在線段上,且,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí).

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)直線與上述軌跡相交于MN兩點(diǎn),且MN的中點(diǎn)在直線上,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案