【題目】在△ABC中, ,則的最大值為__________
【答案】
【解析】∵acosB﹣bcosA=c,
∴結(jié)合正弦定理,得sinAcosB﹣sinBcosA=sinC,
∵C=π﹣(A+B),得sinC=sin(A+B)
∴sinAcosB﹣sinBcosA=(sinAcosB+cosAsinB)
整理,得sinAcosB=4sinBcosA,同除以cosAcosB,得tanA=4tanB
由此可得tan(A﹣B)=
∵A、B是三角形內(nèi)角,且tanA與tanB同號
∴A、B都是銳角,即tanA>0,tanB>0
∵+4tanB≥4
∴tan(A﹣B)=≤,當且僅當=4tanB,即tanB=時,tan(A﹣B)的最大值為.
故答案為: .
科目:高中數(shù)學 來源: 題型:
【題目】某校某班在一次數(shù)學測驗中,全班N名學生的數(shù)學成績的頻率分布直方圖如下,已知分數(shù)在110~120的學生有14人.
(1)求總?cè)藬?shù)N和分數(shù)在120~125的人數(shù)n;
(2)利用頻率分布直方圖,估算該班學生數(shù)學成績的眾數(shù)和中位數(shù)各是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費標準是:每車使用不超過1小時(包含1小時)是免費的,超過1小時的部分每小時收費1元(不足1小時的部分按1小時計算,例如:騎行2.5小時收費2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設甲、乙不超過1小時還車的概率分別為1小時以上且不超過2小時還車的概率分別為兩人用車時間都不會超過3小時.
(Ⅰ)求甲乙兩人所付的車費相同的概率;
(Ⅱ)設甲乙兩人所付的車費之和為隨機變量求的分布列及數(shù)學期望
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解學生的身體狀況,某校隨機抽取了一批學生測量體重.經(jīng)統(tǒng)計,這批學生的體重數(shù)據(jù)(單位:千克)全部介于到之間,將數(shù)據(jù)分成以下組:第組,第組,第組,第組,第組,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第, , 組中隨機抽取名學生做初檢.
()求每組抽取的學生人數(shù).
()若從名學生中再次隨機抽取名學生進行復檢,求這名學生不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某動物園要為剛?cè)雸@的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.
(1)若,求的周長(結(jié)果精確到0.01米);
(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積,的面積盡可能大,當為何值時,該活動室面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是由一平面內(nèi)的個向量組成的集合.若,且的模不小于中除外的所有向量和的模.則稱是的極大向量.有下列命題:
①若中每個向量的方向都相同,則中必存在一個極大向量;
②給定平面內(nèi)兩個不共線向量,在該平面內(nèi)總存在唯一的平面向量,使得中的每個元素都是極大向量;
③若中的每個元素都是極大向量,且中無公共元素,則中的每一個元素也都是極大向量.
其中真命題的序號是_______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某單位職工的月收入情況畫出的樣本頻率分布直方圖,已知圖中第一組的頻數(shù)為4 000,請根據(jù)該圖提供的信息,解答下列問題.
(1)為了分析職工的收入與年齡、學歷等方面的關系,必須從樣本中按月收入用分層抽樣方法抽出100人作進一步分析,則月收入在[1 500,2 000)的這組中應抽取多少人?
(2)試估計樣本數(shù)據(jù)的中位數(shù)與平均數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com