【題目】某商場親子游樂場由于經(jīng)營管理不善突然倒閉.在進行資產(chǎn)清算時發(fā)現(xiàn)有3000名客戶辦理的充值會員卡上還有余額.為了了解客戶充值卡上的余額情況,從中抽取了300名客戶的充值卡余額進行統(tǒng)計.其中余額分組區(qū)間為,,,其頻率分布直方圖如圖所示,請你解答下列問題:

(1)求的值;

(2)求余額不低于元的客戶大約為多少人?

(3)根據(jù)頻率分布直方圖,估計客戶人均損失多少?(用組中值代替各組數(shù)據(jù)的平均值).

【答案】(1)(2)300人(3)765元

【解析】

(1)由頻率分布直方圖中小矩形的面積之和為1,能求出的值;(2) 由直方圖的性質(zhì)求得余額在之間的頻率為,由此能估計余額不低于900元的客戶數(shù)量;(3)利用頻率分布直方圖中每個矩形的中點橫坐標與該矩形的縱坐標、組距相乘后求和可得平均值,能求出客戶人均損失的估計值.

(1)由,解得.

(2)余額在之間的頻率為0.1,故可估計余額不低于900元的客戶大約為(人).

(3)客戶人均損失的估計值為:(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是是參數(shù)),

(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;

(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線任一點為,求點直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個結(jié)論:①若,則;②的圖象關(guān)于點對稱;③函數(shù)上單調(diào)遞增;④的圖象向右平移個單位長度后所得圖象關(guān)于軸對稱.其中所有正確結(jié)論的編號是( )

A.①②④B.①②C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為矩形, .側(cè)面底面.

(1)證明: ;

(2)設(shè)與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費標準是:每車使用不超過1小時(包含1小時)是免費的,超過1小時的部分每小時收費1元(不足1小時的部分按1小時計算,例如:騎行2.5小時收費2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過1小時還車的概率分別為1小時以上且不超過2小時還車的概率分別為兩人用車時間都不會超過3小時.

(Ⅰ)求甲乙兩人所付的車費相同的概率;

)設(shè)甲乙兩人所付的車費之和為隨機變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一舉行了一次數(shù)學(xué)競賽,為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分數(shù)(得分取正整數(shù),滿分為)作為樣本(樣本容量)進行統(tǒng)計,按照、、的分組作出頻率分布直方圖,已知得分在、的頻數(shù)分別為.

1)求樣本容量和頻率分布直方圖中的、的值;

2)估計本次競賽學(xué)生成績的眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生的身體狀況,某校隨機抽取了一批學(xué)生測量體重.經(jīng)統(tǒng)計,這批學(xué)生的體重數(shù)據(jù)(單位:千克)全部介于之間,將數(shù)據(jù)分成以下組:第,第,第,第,第,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第 , 組中隨機抽取名學(xué)生做初檢.

)求每組抽取的學(xué)生人數(shù).

)若從名學(xué)生中再次隨機抽取名學(xué)生進行復(fù)檢,求這名學(xué)生不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動物園要為剛?cè)雸@的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.

(1)若,求的周長(結(jié)果精確到0.01米);

(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積,的面積盡可能大,當(dāng)為何值時,該活動室面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項和為,且成等比數(shù)列,且.

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和;

3)若,為數(shù)列的前項和.若對于任意的,都有恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案