【題目】下表是某學生在4月份開始進人沖刺復習至高考前的5次大型聯(lián)考數(shù)學成績(分);
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)①請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
②若在4月份開始進入沖刺復習前,該生的數(shù)學分數(shù)最好為116分,并以此作為初始分數(shù),利用上述回歸方程預測高考的數(shù)學成績,并以預測高考成績作為最終成績,求該生4月份后復習提高率.(復習提高率=,分數(shù)取整數(shù))
附:回歸直線的斜率和截距的最小二乘估計公式分別為,.
【答案】(1)(2) ①②
【解析】
(1)把所給的5對數(shù)據(jù)寫成對應的點的坐標,在坐標系中描出來,得到散點圖;
(2)根據(jù)所給的這組數(shù)據(jù)求出利用最小二乘法所需要的幾個數(shù)據(jù),代入求系數(shù)的公式,求得結(jié)果,再把樣本中心點代入,求出的值,得到線性回歸方程;根據(jù)上一問所求的線性回歸方程,把代入線性回歸方程 (分),凈提高分為 (分),即可估計該生4月份后復習提高率.
(1)散點圖如圖:
(2)①由題得, ,
,
,, ,
所以 ,,
故關(guān)于的線性回歸方程為.
②由上述回歸方程可得高考應該是第六次考試,故,
則 (分),
故凈提高分為 (分),
所以該生的復習提高率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在是增函數(shù),其圖像如圖所示.
(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某保險公司決定每月給推銷員確定個具體的銷售目標,對推銷員實行目標管理.銷售目標確定的適當與否,直接影響公司的經(jīng)濟效益和推銷員的工作積極性,為此,該公司當月隨機抽取了50位推銷員上個月的月銷售額(單位:萬元),繪制成如圖所示的頻率分布直方圖.
(1)①根據(jù)圖中數(shù)據(jù),求出月銷售額在小組內(nèi)的頻率.
②根據(jù)直方圖估計,月銷售目標定為多少萬元時,能夠使70%的推銷員完成任務?并說明理由.
(2)該公司決定從月銷售額為和的兩個小組中,選取2位推銷員介紹銷售經(jīng)驗,求選出的推銷員來自同一個小組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型水果超市每天以元/千克的價格從水果基地購進若干水果,然后以元/千克的價格出售,若有剩余,則將剩下的水果以元/千克的價格退回水果基地,為了確定進貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天記錄的各日需求量的頻率代替各日需求量的概率.
(1)求該超市水果日需求量(單位:千克)的分布列;
(2)若該超市一天購進水果千克,記超市當天水果獲得的利潤為(單位:元),求的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 ,過直線:上任一點向拋物線引兩條切線(切點為,且點在軸上方).
(1)求證:直線過定點,并求出該定點;
(2)拋物線上是否存在點,使得.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的焦距為2.
(1)若橢圓C經(jīng)過點(,1),求橢圓C的標準方程;
(2)設A(﹣2,0),F為橢圓C的左焦點,若橢圓C上存在點P,滿足,求橢圓C的離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面α及直線a,b,則下列說法正確的是( )
A. 若直線a,b與平面α所成角都是30°,則這兩條直線平行
B. 若直線a,b與平面α所成角都是30°,則這兩條直線不可能垂直
C. 若直線a,b平行,則這兩條直線中至少有一條與平面α平行
D. 若直線a,b垂直,則這兩條直線與平面α不可能都垂直
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質(zhì)量進行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,BA=BC=,,在菱形BCDE中,,AE=.
(1)求證:平面ABC平面AEC;
(2)設直線CE與平面ABE所成的角為,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com