【題目】(1)已知圓,圓,動圓與圓外切并且與圓內切,求動圓圓心的軌跡方程;
(2) 求與雙曲線共漸近線,且過點的雙曲線方程.
【答案】(1);(2).
【解析】
(1)利用兩圓內切、外切時,圓心距與半徑之間的關系,得PM+PN=4,利用橢圓定義,求圓心的軌跡方程;
(2)設與雙曲線共漸近線的雙曲線方程為t(t>0),代入點 即可求出雙曲線方程.
(1) 圓M:(x+1)2+y2=1,圓心M(-1,0),半徑為1,
圓N:(x-1)2+y2=9,圓心N(1,0),半徑為3,
動圓與圓外切并且與圓內切,如圖,
設動圓P半徑為R, 動圓P與圓M外切,則PM=1+R,
動圓P與圓N內切,則PN=3-R,
∴PM+PN=4,即P到M和P到N的距離之和為定值.∴P是以M、N為焦點的橢圓.
∵MN的中點為原點,∴橢圓中心在原點,∴2a=4,a=2,2c=MN=2,c=1,∴b2=a2-c2=4-1=3,
∴動圓圓心的軌跡方程
(2)設與雙曲線共漸近線的雙曲線方程為λ(λ≠0),
∵點在雙曲線上,∴ ,解得,
故所求雙曲線方程為.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2, .
(1)求證:PD⊥平面PAB;
(2)求直線PB與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某交通要道以往的日車流量(單位:萬輛)進行統(tǒng)計,得到如下記錄:
日車流量x | 0≤x<5 | 5≤x<10 | 10≤x<15 | 15≤x<20 | 20≤x<25 | x≥25 |
頻率 | 0.05 | 0.25 | 0.35 | 0.25 | 0.10 | 0 |
將日車流量落入各組的頻率視為概率,并假設每天的車流量相互獨立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日車流量都不低于10萬輛且另1天的日車流量低于5萬輛的概率;
(2)用X表示在未來3天時間里日車流量不低于10萬輛的天數,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率是,點在橢圓上,A,B分別為橢圓的右頂點與上頂點,過點A,B引橢圓C的兩條弦AE、BF交橢圓于點E,F.
求橢圓C的方程;
若直線AE,BF的斜率互為相反數,
求出直線EF的斜率;
若O為直角坐標原點,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等腰△ABC中,AC=BC= ,AB=2,E,F(xiàn)分別為AC,BC的中點,將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP= .
(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有5人進入到一列有7節(jié)車廂的地鐵中,分別求下列情況的概率用數字作最終答案:
恰好有5節(jié)車廂各有一人;
恰好有2節(jié)不相鄰的空車廂;
恰好有3節(jié)車廂有人.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我校的課外綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到
市氣象觀測站與市醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到
如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 (°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數 (個) | 22 | 25 | 29 | 26 | 16 | 12 |
該綜合實踐研究小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(1)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出關于的線性回歸方程.
(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數據:
.
參考公式:回歸直線,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2+bx﹣alnx.
(1)若x=2是函數f(x)的極值點,1和x0是函數f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n.
(2)若對任意b∈[﹣2,﹣1],都存在x∈(1,e)(e為自然對數的底數),使得f(x)<0成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com