【題目】如圖,在四棱錐中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2, .
(1)求證:PD⊥平面PAB;
(2)求直線PB與平面PCD所成角的正弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)由條件得平面PAD,因此,再結(jié)合 ,可得PD⊥平面PAB。(2)取AD的中點(diǎn)O,連PO,CO,可證得OP,OA,OC兩兩垂直,建立空間直角坐標(biāo)系,用向量的運(yùn)算求解。
試題解析:
(1)∵平面PAD⊥平面ABCD, 平面PAD平面ABCD=AD, AB⊥AD,
∴平面PAD,
∵平面PAD,
∴,
又,
∴ PD⊥平面PAB。
(2)取AD的中點(diǎn)O,連PO,CO。
∵,
∴CO⊥AD,
∵PA=PD,
∴PO⊥AD,
∴OP,OA,OC兩兩垂直,
以O為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系O-xyz,
則。
∴。
設(shè)平面PCD的一個(gè)法向量為,
由 ,得。
令,則。
設(shè)直線PB與平面PCD所成角為,
則.
∴直線PB與平面PCD所成角的正弦值為。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線: 與橢圓: 在第一象限的交點(diǎn)為, 為坐標(biāo)原點(diǎn), 為橢圓的右頂點(diǎn), 的面積為.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點(diǎn)作直線交于、 兩點(diǎn),射線、分別交于、兩點(diǎn),記和的面積分別為和,問是否存在直線,使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等腰直角三角形ABC的直角頂點(diǎn)A在x軸的正半軸上,B在y軸的正半軸上,C在第一象限,設(shè)∠BAO=θ(O為坐標(biāo)原點(diǎn)),AB=AC=2,當(dāng)OC的長取得最大值時(shí),tanθ的值為( )
A.
B.﹣1+
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x+2cos2x+m(0≤x≤ ).
(1)若函數(shù)f(x)的最大值為6,求常數(shù)m的值;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1和x2 , 求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱中, ,點(diǎn)分別為的中點(diǎn).
(1)求證: 平面;
(2)求三棱錐的體積(錐體的體積公式,其中為底面面積, 為高)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.已知高一年級共有學(xué)生600名,據(jù)此估計(jì),該模塊測試成績不少于60分的學(xué)生人數(shù)為( )
A.588
B.480
C.450
D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為評估兩套促銷活動(dòng)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元/件),在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷活動(dòng)方案),運(yùn)作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動(dòng)方案(不必說明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)(單位:元/件,整數(shù))和銷量(單位:件)()如下表所示:
售價(jià) | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù),并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價(jià)定為多少時(shí)?利潤可以達(dá)到最大.
49428.74 | 11512.43 | 175.26 | |
124650 |
(附:相關(guān)指數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓的一個(gè)焦點(diǎn)為圓: 的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點(diǎn),過作兩條斜率之積為的直線, ,當(dāng)直線, 都與圓相切時(shí),求的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,正確的是( )
①兩個(gè)平面同時(shí)垂直第三個(gè)平面,則這兩個(gè)平面可能互相垂直
②方程 表示經(jīng)過第一、二、三象限的直線
③若一個(gè)平面中有4個(gè)不共線的點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行
④方程可以表示經(jīng)過兩點(diǎn)的任意直線
A. ②③ B. ①④ C. ①②④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com