【題目】下列四個命題中,正確的是( )

①兩個平面同時垂直第三個平面,則這兩個平面可能互相垂直

②方程 表示經(jīng)過第一、二、三象限的直線

③若一個平面中有4個不共線的點到另一個平面的距離相等,則這兩個平面平行

④方程可以表示經(jīng)過兩點的任意直線

A. ②③ B. ①④ C. ①②④ D. ①②③④

【答案】C

【解析】對于①,如果兩個平面垂直于同一個平面,那么這兩個平面可能互相垂直,比如正方體的兩個相鄰側(cè)面與底面,故正確;

對于②,當 時,直線 ,即 ,故直線的斜率 ,且直線在軸上的截距- 故直線經(jīng)過第一、二、三象限,故正確;

對于③,在正方體中,這四個點不共線,且它們到平面的距離都相等,但平面與平面并不平行,故錯誤
對于④為兩點式的變形,包括點,故正確

故①②④正確,選C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面PAD平面ABCDPAPD,PA=PD,ABAD,AB=1,AD=2 .

1)求證:PD⊥平面PAB;

2)求直線PB與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓.

(1)若橢圓的右焦點坐標為,求的值;

(2)由橢圓上不同三點構成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點的橢圓的內(nèi)接等腰直角三角形恰有三個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 已知實數(shù)滿足方程,當)時,由此方程可以確定一個偶函數(shù),則拋物線的焦點到點的軌跡上點的距離最大值為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個正方體的展開圖,如果將它還原為正方體,那么NC、DE、AF、BM這四條線段所在的直線是異面直線的有多少對?試以其中一對為例進行證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列, 都是單調(diào)遞增數(shù)列,若將這兩個數(shù)列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數(shù)列.

(1)設數(shù)列、分別為等差、等比數(shù)列,若, ,求

(2)設的首項為1,各項為正整數(shù), ,若新數(shù)列是等差數(shù)列,求數(shù)列 的前項和;

(3)設是不小于2的正整數(shù)),,是否存在等差數(shù)列,使得對任意的,在之間數(shù)列的項數(shù)總是?若存在,請給出一個滿足題意的等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, , 上,且∥面BDM.

(1)求直線PC與平面BDM所成角的正弦值;

(2)求平面BDM與平面PAD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (為常數(shù), 為自然對數(shù)的底數(shù)).

(Ⅰ)當時,討論函數(shù)在區(qū)間上極值點的個數(shù);

(Ⅱ)當, 時,對任意的都有成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , 的中點.

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案