【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元/件),在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應的等高條形圖如圖所示.
(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價(單位:元/件,整數(shù))和銷量(單位:件)()如下表所示:
售價 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請根據(jù)下列數(shù)據(jù)計算相應的相關指數(shù),并根據(jù)計算結果,選擇合適的回歸模型進行擬合;
②根據(jù)所選回歸模型,分析售價定為多少時?利潤可以達到最大.
49428.74 | 11512.43 | 175.26 | |
124650 |
(附:相關指數(shù))
【答案】(1)年度平均銷售額與方案1的運作相關性強于方案2.(2)①采用回歸模型進行擬合最為合適. ②
【解析】試題分析:(1)由等高條形圖可判斷年度平均銷售額與方案1的運作相關性強于方案2.
(2)①由已知數(shù)據(jù)可知, 比較大小可得最佳擬合方案;
②由(1)可知,采用方案1的運作效果較方案2好,故年利潤,求導求最值即可.
試題解析:(1)由等高條形圖可知,年度平均銷售額與方案1的運作相關性強于方案2.
(2)①由已知數(shù)據(jù)可知,回歸模型對應的相關指數(shù);
回歸模型對應的相關指數(shù);
回歸模型對應的相關指數(shù).
因為,所以采用回歸模型進行擬合最為合適.
②由(1)可知,采用方案1的運作效果較方案2好,
故年利潤, ,
當時, 單調(diào)遞增;
當時, 單調(diào)遞減,
故當售價時,利潤達到最大.
科目:高中數(shù)學 來源: 題型:
【題目】對于無窮數(shù)列,記,若數(shù)列滿足:“存在,使得只要(且),必有”,則稱數(shù)列具有性質.
(Ⅰ)若數(shù)列滿足判斷數(shù)列是否具有性質?是否具有性質?
(Ⅱ)求證:“是有限集”是“數(shù)列具有性質”的必要不充分條件;
(Ⅲ)已知是各項為正整數(shù)的數(shù)列,且既具有性質,又具有性質,求證:存在整數(shù),使得是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2, .
(1)求證:PD⊥平面PAB;
(2)求直線PB與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列4個命題,其中正確的命題序號為( )
①|x+ |的最小值是2 ② 的最小值是2 ③log2x+logx2的最小值是2 ④3x+3﹣x的最小值是2.
A.①②③
B.①②④
C.②③④
D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰梯形中, , , ,四邊形為矩形, ,平面平面,點為線段中點.
(Ⅰ)求異面直線與所成的角的正切值;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓.
(1)若橢圓的右焦點坐標為,求的值;
(2)由橢圓上不同三點構成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點的橢圓的內(nèi)接等腰直角三角形恰有三個,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, , 在上,且∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com