【題目】有5人進入到一列有7節(jié)車廂的地鐵中,分別求下列情況的概率用數(shù)字作最終答案

恰好有5節(jié)車廂各有一人;

恰好有2節(jié)不相鄰的空車廂;

恰好有3節(jié)車廂有人.

【答案】(1);(2);(3).

【解析】

人進入到一列有7節(jié)車廂的地鐵中,基本事件總數(shù),恰好有5節(jié)車廂各有一人包含的基本事件的個數(shù),由此能求出恰好有5節(jié)車廂各有一人的概率;

恰好有2節(jié)不相鄰的空車廂包含的基本事件的個數(shù),由此能求出恰好有2節(jié)不相鄰的空車廂的概率;

恰好有3節(jié)車廂有人包含的基本事件個數(shù)由此能求出恰好有3節(jié)車廂有人的概率。

人進入到一列有7節(jié)車廂的地鐵中,

基本事件總數(shù),

恰好有5節(jié)車廂各有一人包含的基本事件的個數(shù),

所以恰好有5節(jié)車廂各有一人的概率。

恰好有2節(jié)不相鄰的空車廂包含的基本事件的個數(shù),

所以恰好有2節(jié)不相鄰的空車廂的概率。

恰好有3節(jié)車廂有人包含的基本事件個數(shù),

所以恰好有3節(jié)車廂有人的概率。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(﹣x)+f(x+3)=0;當x∈(0,3)時,f(x)= ,其中e是自然對數(shù)的底數(shù),且e≈2.72,則方程6f(x)﹣x=0在[﹣9,9]上的解的個數(shù)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.

表示臺機器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺機器在購買易損零件上所需的費用(單位:元),表示購機的同時購買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設這臺機器在購機的同時每臺都購買個易損零件,或每臺都購買個易損零件,分別計算這臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買臺機器的同時應購買個還是個易損零件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,,平面ABCDEPD的中點,

求四棱錐的體積V;

FPC的中點,求證平面AEF

求證平面PAB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,求動圓圓心的軌跡方程;

(2) 求與雙曲線共漸近線,且過點的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若x=3是函數(shù)f(x)=(x2+ax+1)ex的極值點,則f(x)的極大值為(  )

A. ﹣2e B. -2 C. 22 D. 6e﹣1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導函數(shù)f′(x)< ,則不等式f(x2)< + 的解集為(
A.(﹣ ,
B.(﹣∞,﹣1)∪(1,+∞)??
C.(﹣1,1)
D.(﹣∞,﹣ )∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知橢圓的左、右頂點分別為A,B,其離心率,點為橢圓上的一個動點,面積的最大值是

(1)求橢圓的方程;

(2)若過橢圓右頂點的直線與橢圓的另一個交點為,線段的垂直平分線與軸交于點,當時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三棱柱的所有棱長都相等,分別為的中點.現(xiàn)有下列四個結(jié)論:

;

平面:異面直線所成角的余弦值為.

其中正確的結(jié)論是

A. B. C. D.

查看答案和解析>>

同步練習冊答案